Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cold air chills heart's oxygen supply

29.02.2012
People with heart disease may not be able to compensate for their bodies' higher demand for oxygen when inhaling cold air, according to Penn State researchers, making snow shoveling and other activities dangerous for some.

"This study can help us understand why cold air is such a trigger for coronary events," said Lawrence I. Sinoway, Distinguished Professor of Medicine and director of the Heart and Vascular Institute, Penn State College of Medicine.

Breathing cold air during exercise can cause uneven oxygen distribution throughout the heart. But a healthy body generally corrects for this problem and redistributes blood flow, making sure the heart continues to function properly. In people with heart problems -- such as coronary artery disease -- this may not be the case, said Sinoway.

"If you are doing some type of isometric work and you're breathing cold air, your heart is doing more work -- it's consuming more oxygen," said Sinoway, also director of the Clinical and Translational Science Institute at Penn State.

Isometric work includes such activities as shoveling snow and carrying a briefcase or laptop bag. The heart works harder when exerted in cold temperatures and the number of deaths due to cardiac arrest peaks during the winter.

"There are two different things going on here -- demand and supply," said Matthew D. Muller, postdoctoral fellow at the Heart and Vascular Institute, Penn State College of Medicine. "We thought that oxygen demand in the heart would be higher with cold-air breathing and we also thought that oxygen supply would be a little bit impaired. And that's generally what we found."

Sinoway, Muller and colleagues reported their results in a recent issue of the Journal of Applied Physiology and in the current issue of the American Journal of Physiology, Heart and Circulatory Physiology.

The researchers first studied healthy young adults in their 20s and then studied a group of healthy older adults in their 60s so that they could learn how the heart functions in people without disease. Each subject was monitored for lung function and heart functions during the trials.

In order to measure heart function during exercise, the participants performed an isometric, or static, handgrip, which is a maneuver known to increase blood pressure. Subjects squeezed the handgrip device and held it still for two minutes, providing a consistent workload on the heart for the researchers to measure. Muller and Sinoway found that there was a supply-demand mismatch in the left ventricle -- where the heart receives oxygenated blood -- yet the heart was able to continue functioning appropriately.

These findings "suggest that healthy humans can adequately redistribute blood to the subendocardium (the blood vessels entering the heart) during the combined stimulus of cold-air inhalation and handgrip exercise," the researchers stated.

Also working on this research were Zhaohui Gao, instructor; Rachel C. Drew, postdoctoral fellow; Michael D. Herr, biomedical engineer; Urs A. Leuenberger, physician and professor of medicine; and Jessica L. Mast and Cheryl A. Blaha, clinical research nurses, all at the Heart and Vascular Institute, Penn State College of Medicine.

The National Institutes of Health and the Wilderness Medical Society both supported this research.

Victoria M. Indivero | EurekAlert!
Further information:
http://www.psu.edu

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>