Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cold air chills heart's oxygen supply

People with heart disease may not be able to compensate for their bodies' higher demand for oxygen when inhaling cold air, according to Penn State researchers, making snow shoveling and other activities dangerous for some.

"This study can help us understand why cold air is such a trigger for coronary events," said Lawrence I. Sinoway, Distinguished Professor of Medicine and director of the Heart and Vascular Institute, Penn State College of Medicine.

Breathing cold air during exercise can cause uneven oxygen distribution throughout the heart. But a healthy body generally corrects for this problem and redistributes blood flow, making sure the heart continues to function properly. In people with heart problems -- such as coronary artery disease -- this may not be the case, said Sinoway.

"If you are doing some type of isometric work and you're breathing cold air, your heart is doing more work -- it's consuming more oxygen," said Sinoway, also director of the Clinical and Translational Science Institute at Penn State.

Isometric work includes such activities as shoveling snow and carrying a briefcase or laptop bag. The heart works harder when exerted in cold temperatures and the number of deaths due to cardiac arrest peaks during the winter.

"There are two different things going on here -- demand and supply," said Matthew D. Muller, postdoctoral fellow at the Heart and Vascular Institute, Penn State College of Medicine. "We thought that oxygen demand in the heart would be higher with cold-air breathing and we also thought that oxygen supply would be a little bit impaired. And that's generally what we found."

Sinoway, Muller and colleagues reported their results in a recent issue of the Journal of Applied Physiology and in the current issue of the American Journal of Physiology, Heart and Circulatory Physiology.

The researchers first studied healthy young adults in their 20s and then studied a group of healthy older adults in their 60s so that they could learn how the heart functions in people without disease. Each subject was monitored for lung function and heart functions during the trials.

In order to measure heart function during exercise, the participants performed an isometric, or static, handgrip, which is a maneuver known to increase blood pressure. Subjects squeezed the handgrip device and held it still for two minutes, providing a consistent workload on the heart for the researchers to measure. Muller and Sinoway found that there was a supply-demand mismatch in the left ventricle -- where the heart receives oxygenated blood -- yet the heart was able to continue functioning appropriately.

These findings "suggest that healthy humans can adequately redistribute blood to the subendocardium (the blood vessels entering the heart) during the combined stimulus of cold-air inhalation and handgrip exercise," the researchers stated.

Also working on this research were Zhaohui Gao, instructor; Rachel C. Drew, postdoctoral fellow; Michael D. Herr, biomedical engineer; Urs A. Leuenberger, physician and professor of medicine; and Jessica L. Mast and Cheryl A. Blaha, clinical research nurses, all at the Heart and Vascular Institute, Penn State College of Medicine.

The National Institutes of Health and the Wilderness Medical Society both supported this research.

Victoria M. Indivero | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>