Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cold air chills heart's oxygen supply

29.02.2012
People with heart disease may not be able to compensate for their bodies' higher demand for oxygen when inhaling cold air, according to Penn State researchers, making snow shoveling and other activities dangerous for some.

"This study can help us understand why cold air is such a trigger for coronary events," said Lawrence I. Sinoway, Distinguished Professor of Medicine and director of the Heart and Vascular Institute, Penn State College of Medicine.

Breathing cold air during exercise can cause uneven oxygen distribution throughout the heart. But a healthy body generally corrects for this problem and redistributes blood flow, making sure the heart continues to function properly. In people with heart problems -- such as coronary artery disease -- this may not be the case, said Sinoway.

"If you are doing some type of isometric work and you're breathing cold air, your heart is doing more work -- it's consuming more oxygen," said Sinoway, also director of the Clinical and Translational Science Institute at Penn State.

Isometric work includes such activities as shoveling snow and carrying a briefcase or laptop bag. The heart works harder when exerted in cold temperatures and the number of deaths due to cardiac arrest peaks during the winter.

"There are two different things going on here -- demand and supply," said Matthew D. Muller, postdoctoral fellow at the Heart and Vascular Institute, Penn State College of Medicine. "We thought that oxygen demand in the heart would be higher with cold-air breathing and we also thought that oxygen supply would be a little bit impaired. And that's generally what we found."

Sinoway, Muller and colleagues reported their results in a recent issue of the Journal of Applied Physiology and in the current issue of the American Journal of Physiology, Heart and Circulatory Physiology.

The researchers first studied healthy young adults in their 20s and then studied a group of healthy older adults in their 60s so that they could learn how the heart functions in people without disease. Each subject was monitored for lung function and heart functions during the trials.

In order to measure heart function during exercise, the participants performed an isometric, or static, handgrip, which is a maneuver known to increase blood pressure. Subjects squeezed the handgrip device and held it still for two minutes, providing a consistent workload on the heart for the researchers to measure. Muller and Sinoway found that there was a supply-demand mismatch in the left ventricle -- where the heart receives oxygenated blood -- yet the heart was able to continue functioning appropriately.

These findings "suggest that healthy humans can adequately redistribute blood to the subendocardium (the blood vessels entering the heart) during the combined stimulus of cold-air inhalation and handgrip exercise," the researchers stated.

Also working on this research were Zhaohui Gao, instructor; Rachel C. Drew, postdoctoral fellow; Michael D. Herr, biomedical engineer; Urs A. Leuenberger, physician and professor of medicine; and Jessica L. Mast and Cheryl A. Blaha, clinical research nurses, all at the Heart and Vascular Institute, Penn State College of Medicine.

The National Institutes of Health and the Wilderness Medical Society both supported this research.

Victoria M. Indivero | EurekAlert!
Further information:
http://www.psu.edu

More articles from Health and Medicine:

nachricht Penn studies find promise for innovations in liquid biopsies
30.03.2017 | University of Pennsylvania School of Medicine

nachricht 'On-off switch' brings researchers a step closer to potential HIV vaccine
30.03.2017 | University of Nebraska-Lincoln

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>