Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cold air chills heart's oxygen supply

29.02.2012
People with heart disease may not be able to compensate for their bodies' higher demand for oxygen when inhaling cold air, according to Penn State researchers, making snow shoveling and other activities dangerous for some.

"This study can help us understand why cold air is such a trigger for coronary events," said Lawrence I. Sinoway, Distinguished Professor of Medicine and director of the Heart and Vascular Institute, Penn State College of Medicine.

Breathing cold air during exercise can cause uneven oxygen distribution throughout the heart. But a healthy body generally corrects for this problem and redistributes blood flow, making sure the heart continues to function properly. In people with heart problems -- such as coronary artery disease -- this may not be the case, said Sinoway.

"If you are doing some type of isometric work and you're breathing cold air, your heart is doing more work -- it's consuming more oxygen," said Sinoway, also director of the Clinical and Translational Science Institute at Penn State.

Isometric work includes such activities as shoveling snow and carrying a briefcase or laptop bag. The heart works harder when exerted in cold temperatures and the number of deaths due to cardiac arrest peaks during the winter.

"There are two different things going on here -- demand and supply," said Matthew D. Muller, postdoctoral fellow at the Heart and Vascular Institute, Penn State College of Medicine. "We thought that oxygen demand in the heart would be higher with cold-air breathing and we also thought that oxygen supply would be a little bit impaired. And that's generally what we found."

Sinoway, Muller and colleagues reported their results in a recent issue of the Journal of Applied Physiology and in the current issue of the American Journal of Physiology, Heart and Circulatory Physiology.

The researchers first studied healthy young adults in their 20s and then studied a group of healthy older adults in their 60s so that they could learn how the heart functions in people without disease. Each subject was monitored for lung function and heart functions during the trials.

In order to measure heart function during exercise, the participants performed an isometric, or static, handgrip, which is a maneuver known to increase blood pressure. Subjects squeezed the handgrip device and held it still for two minutes, providing a consistent workload on the heart for the researchers to measure. Muller and Sinoway found that there was a supply-demand mismatch in the left ventricle -- where the heart receives oxygenated blood -- yet the heart was able to continue functioning appropriately.

These findings "suggest that healthy humans can adequately redistribute blood to the subendocardium (the blood vessels entering the heart) during the combined stimulus of cold-air inhalation and handgrip exercise," the researchers stated.

Also working on this research were Zhaohui Gao, instructor; Rachel C. Drew, postdoctoral fellow; Michael D. Herr, biomedical engineer; Urs A. Leuenberger, physician and professor of medicine; and Jessica L. Mast and Cheryl A. Blaha, clinical research nurses, all at the Heart and Vascular Institute, Penn State College of Medicine.

The National Institutes of Health and the Wilderness Medical Society both supported this research.

Victoria M. Indivero | EurekAlert!
Further information:
http://www.psu.edu

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>