Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cognitive deficits from concussions still present after 2 months

08.01.2013
University of Oregon researchers deploy sensitive brain-testing methods on injured high school athletes

The ability to focus and switch tasks readily amid distractions was compromised for up to two months following brain concussions suffered by high school athletes, according to a study at the University of Oregon.

Research team members, in an interview, said the discovery suggests that some athletes may need longer recovery periods than current practices dictate to lower the risk of subsequent concussions. Conventional wisdom, said lead author David Howell, a graduate student in the UO Department of Human Physiology, has typical recovery at seven to 10 days.

"The differences we detected may be a matter of milliseconds between a concussed person and a control subject, but as far as brain time goes that difference for a linebacker returning to competition too soon could mean the difference between another injury or successfully preparing to safely tackle an oncoming running back," Howell said.

The findings are based on cognitive exercises used five times over the two months with a pair of sensitive computer-based measuring tools -- the attentional network test and the task-switching test. The study focused on the effects of concussions to the frontal region of the brain, which is responsible for working, or short-term, memory and executive function, said Li-Shan Chou, professor of human physiology and director of the UO Motion Analysis Laboratory.

The study was published online ahead of print by Medicine & Science in Sports & Exercise, the official journal of the American College of Sports Medicine.

"If a person goes back to the playing field without a full recovery, that person is put into great danger of being re-injured," Chou said. "In any given season, if you suffer a concussion, the chances of your suffering a second one is three to six times higher and suffering a third is eight times higher. There are accumulations in this kind of injury. It doesn't go away easily."

A big unknown, the researchers said, is just how serious such injuries are for adolescents, whose brains are still developing. It could be the brain can recover more easily, or such injuries could continue to produce deficits that last a lifetime. "We just don't know," Chou said, adding that most previous studies have involved college-aged athletes and older adults.

Each year, there are 300,000 to 500,000 mild traumatic brain injury incidents, or concussions, with 100,000 tied to football, Chou said. He also cited a 2011 report from the Centers for Disease Control and Prevention that called such injuries a silent epidemic, with sports-related concussions in youths rising by 60 percent in the last decade. Another source of concussions, he added, is improvised explosive devices used in warfare.

Through an arrangement with Eugene-area schools, 20 high school athletes who had suffered a concussion -- primarily football players but also others from soccer, volleyball and wrestling -- were assessed within 72 hours of injury and then again one week, two weeks, a month and two months later. Each of the subjects, whose diagnosis was made by a certified athletic trainer and/or physician, was matched with a healthy control subject of the same sex, body size, age and sport.

"After two months following the concussions, these individuals were still significantly impaired in their executive function, compared to age-matched, activity-matched and gender-matched control populations," said co-author Louis Osternig, professor emeritus of human physiology and a fellow of the American College of Sports Medicine.

Osternig, also a certified athletic trainer, noted that self-reports by the subjects about how they were feeling sometimes were at odds with test results, which continued to show subtle deficits in cognitive functioning. The researchers also noted anecdotal reports from concussed athletes and their parents of declines in academic performance during the two-month period.

Additional data linking the deficits found in cognitive testing to the subjects' gait -- their task-shifting abilities while walking -- currently are being analyzed in the ongoing project, which is funded by the Department of Defense Telemedicine & Advanced Technology Research Center (W81XWH-11-1-0717), National Athletic Trainers Association, Veterans Administration and a translational research award from a joint UO-PeaceHealth Oregon Region collaboration program.

"By using tools from cognitive psychology, neuroscience and human physiology, this interdisciplinary team of scientists is improving our understanding of how brain trauma affects reaction time, and they are helping to create better outcomes for athletes, soldiers and others who are affected by concussions," said Kimberly Andrews Espy, vice president for research and innovation and dean of the graduate school. "UO researchers are working to improve the health and well-being of people in our local communities and throughout the world."

"The brain is the controller of our body movement," Chou said. "If you have a brain injury, are there any differences that we can pick up in the way a subject moves the body? In this lab, we are using motion analysis as a way to detect any deficiencies or abnormalities of body movement."

Chou said that his lab's goal, for now, is to disseminate the findings to the public and to talk to parents, athletic trainers and, perhaps, coaches directly to say: "These are the facts. We may not be able to draw any line on what clinically should or shouldn't be done. However, these are our observations based on our scientific testing."

Additional co-authors on the study were Ulrich Mayr, a UO psychology professor, and Paul van Donkelaar, a former UO human physiology professor now at the University of British Columbia. Both are experts on the testing methodologies.

About the University of Oregon

The University of Oregon is among the 108 institutions chosen from 4,633 U.S. universities for top-tier designation of "Very High Research Activity" in the 2010 Carnegie Classification of Institutions of Higher Education. The UO also is one of two Pacific Northwest members of the Association of American Universities.

Sources:

Li-Shan Chou
professor of human physiology
541-346-3391
chou@uoregon.edu
David Howell
graduate student
human physiology
541-346-1033
dhowell@uoregon.edu
Louis Osternig
541-346-3384
louiso@uoregon.edu
Links:
Chou faculty page: http://physiology.uoregon.edu/people/chou
Motion Analysis Laboratory: http://biomechanics.uoregon.edu/MAL/index.html
Osternig faculty page: http://physiology.uoregon.edu/people/osternig
Department of Human Physiology: http://physiology.uoregon.edu/
About the 2011 CDC report: http://www.cdc.gov/media/releases/2011/p1006_TBI_Youth.html

AUDIO (Similar summaries):

From David Howell: bit.ly/Vj5ySh
From Li-Shan Chou: bit.ly/VuyMxf
From Louis Osternig: bit.ly/S5clT2
Follow UO Science on Facebook:
http://www.facebook.com/UniversityOfOregonScience
Note: The University of Oregon is equipped with an on-campus television studio with satellite uplink capacity, and a radio studio with an ISDN phone line for broadcast-quality radio interviews. Call the Media Contact above to begin the process.

Jim Barlow | EurekAlert!
Further information:
http://www.uoregon.edu

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>