Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cocoa could prevent intestinal pathologies such as colon cancer

A new study on living animals has shown for the first time that eating cocoa (the raw material in chocolate) can help to prevent intestinal complaints linked to oxidative stress, including colon carcinogenesis onset caused by chemical substances.

The growing interest amongst the scientific community to identify those foods capable of preventing diseases has now categorized cocoa as a 'superfood'. It has been recognised as an excellent source of phytochemical compounds, which offer potential health benefits.

Headed by scientists from the Institute of Food Science and Technology and Nutrition (ICTAN) and recently published in the Molecular Nutrition & Food Research journal, the new study supports this idea and upholds that cacao consumption helps to prevent intestinal complaints linked to oxidative stress, such as the onset of chemically induced colon carcinogenesis.

"Being exposed to different poisons in the diet like toxins, mutagens and procarcinogens, the intestinal mucus is very susceptible to pathologies," explains María Ángeles Martín Arribas, lead author of the study and researcher at ICTAN. She adds that "foods like cocoa, which is rich in polyphenols, seems to play an important role in protecting against disease."

The study on live animals (rats) has for the first time confirmed the potential protection effect that flavonoids in cocoa have against colon cancer onset. For eight weeks the authors of the study fed the rats with a cocoa-rich (12%) diet and carcinogenesis was induced.

Possible protection

Doctor Martín Arribas outlines that "four weeks after being administered with the chemical compound azoxymethane (AOM), intestinal mucus from premalignant neoplastic lesions appeared. These lesions are called 'aberrant crypt foci' and are considered to be good markers of colon cancer pathogenesis."

The results of the study showed that the rats fed a cocoa-rich diet had a significantly reduced number of aberrant crypts in the colon induced by the carcinogen. Likewise, this sample saw an improvement in their endogenous antioxidant defences and a decrease in the markers of oxidative damage induced by the toxic compound in this cell.

The researchers conclude that the protection effect of cocoa can stop cell-signalling pathways involved in cell proliferation and, therefore, subsequent neoplasty and tumour formation. Lastly, the animals fed with the cocoa-rich diet showed an increase in apoptosis or programmed cell death as a chemoprevention mechanism against the development of the carcinogenesis.

Although more research is required to determine what bioactive compounds in cocoa are responsible for such effects, the authors conclude that a cocoa-rich diet seems capable of reducing induced oxidative stress. It could also have protection properties in the initial stages of colon cancer as it reduces premalignant neoplastic lesion formation.

A not-so-guilty pleasure

Cocoa is one of the ingredients in chocolate. It is one of the richest foods in phenolic compounds, mainly in flavonoids like procyanidins, catechins and epicatechins, which have numerous beneficial biological activities in the prevention of cardiovascular diseases and cancer (mainly colorectal cancer).

In fact, compared to other foods with a high flavonoid content, cocoa has a high level of procyanidins with limited bioavailability. These flavonoids are therefore found in their highest concentrations in the intestine where they neutralise many oxidants.


ldefonso Rodríguez-Ramiro, Sonia Ramos, Elvira López-Oliva, Angel Agis-Torres, Miren Gómez-Juaristi, Raquel Mateos, Laura Bravo, Luis Goya, María Ángeles Martín. "Cocoa-rich diet prevents azoxymethane-induced colonic preneoplastic lesions in rats by restraining oxidative stress and cell proliferation and inducing apoptosis". Molecular Nutrition & Food Research, 55:1895-1899, diciembre de 2011. DOI 10.1002/mnfr.201100363.

SINC | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Taming chaos: Calculating probability in complex systems

21.03.2018 | Physics and Astronomy

Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

21.03.2018 | Physics and Astronomy

New 4-D printer could reshape the world we live in

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>