Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New clues to mystery childhood illness: Kawasaki disease

12.01.2009
A study looking at the entire human genome has identified new genes that appear to be involved in making some children more susceptible to Kawasaki disease (KD), a serious illness that often leads to coronary artery disease, according to a new international study published in PLoS Genetics. This is the first genetic study of an infectious disease to look at the whole of the genome, rather than just selected genes.

Researchers from UC San Diego School of Medicine Department of Pediatrics joined an international research team, including colleagues from The University of Western Australia, the Genome Institute of Singapore, Emma Children's Hospital, The Netherlands, and Imperial College London, UK. The group studied naturally occurring genetic variation in almost 900 cases of Kawasaki disease from these countries. UC San Diego coordinated the U.S. genetics effort, collecting DNA samples from around the country.

"KD tends to run in families, suggesting that there are genetic components to disease risk," said Jane C. Burns, M.D., professor and Chief, Division of Allergy, Immunology, and Rheumatology, UC San Diego Department of Pediatrics. "We have been trying to understand the step by step development of this disease (pathogenesis) and the chain of events leading to it, using a biological approach but with limited success. This robust, systematic genome wide study is simply letting the genetics tell us what are the key genes in KD pathogenesis. Without this research these newly discovered genes of interest might have continued to remain hidden."

Kawasaki disease is an unusual and serious illness of young children that causes high fever, rash, red eyes and lips, swollen glands, and swollen hands and feet with peeling skin. The disease also causes damage of the coronary arteries in a quarter of untreated children and may increase the risk of atherosclerosis in early adulthood. The cause of Kawasaki disease is unknown, but it seems to be due to an infection in susceptible children. There is no diagnostic test for Kawasaki disease, and current treatment fails to prevent coronary damage in at least one in 10-20 children and death in one in 1,000 children.

This study found that genes involved in cardiovascular function and inflammation may be particularly important and some seem to function together. The authors consider that these findings will lead to new diagnostics and better treatment and may be informative about adult cardiovascular disease as well.

The findings do not yet prove that the new genes are functionally involved. Other genetic variants may be important, especially in different ethnic groups. The authors are planning detailed studies of the function of these genes and larger collaborative studies including East Asian populations, who are at particular risk of Kawasaki disease, with 1 in 150 Japanese children affected.

"So now it is time to come back to the biology and study the genes and the pathways and their role in KD pathogenesis," explained associate project scientist Chisato Shimizu, M.D., Kawasaki Disease Research Center, UC San Diego School of Medicine. "Most importantly, we will be able to use these data to help us predict which children with Kawasaki disease are at most risk for heart disease from their KD."

"Our laboratory is the focal point where the combination of academic research and clinical investigation lead to better treatment and patient outcome," explained Kawasaki Disease Research Center Assistant Director, Adriana Tremoulet, M.D., assistant adjunct professor, UC San Diego Department of Pediatrics and Rady Children's Hospital. "UC San Diego represents the entire U.S. genetics consortium. Through a grant from the NIH we have been able to support DNA collection in Los Angeles, Hawaii, Chicago, and Boston, as well as Japan and Finland. We coordinate the entire U.S. KD genetics effort and are the conduit for U.S. DNA to join the international effort based in Singapore."

Burns says the next steps include "drilling down" on candidate genes and pathways that were discovered in the genome-wide analysis. This detailed analysis will identify the exact genetic differences that influence disease susceptibility and outcome.

"We can already see a way in which this suggests a new treatment for KD that may be much less expensive than the current treatment with IVIG (intravenous immunoglobulin)," said Burns.

Kim Edwards | EurekAlert!
Further information:
http://www.ucsd.edu
http://www.pediatrics.ucsd.edu/kawasaki

More articles from Health and Medicine:

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>