Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New clues to mystery childhood illness: Kawasaki disease

12.01.2009
A study looking at the entire human genome has identified new genes that appear to be involved in making some children more susceptible to Kawasaki disease (KD), a serious illness that often leads to coronary artery disease, according to a new international study published in PLoS Genetics. This is the first genetic study of an infectious disease to look at the whole of the genome, rather than just selected genes.

Researchers from UC San Diego School of Medicine Department of Pediatrics joined an international research team, including colleagues from The University of Western Australia, the Genome Institute of Singapore, Emma Children's Hospital, The Netherlands, and Imperial College London, UK. The group studied naturally occurring genetic variation in almost 900 cases of Kawasaki disease from these countries. UC San Diego coordinated the U.S. genetics effort, collecting DNA samples from around the country.

"KD tends to run in families, suggesting that there are genetic components to disease risk," said Jane C. Burns, M.D., professor and Chief, Division of Allergy, Immunology, and Rheumatology, UC San Diego Department of Pediatrics. "We have been trying to understand the step by step development of this disease (pathogenesis) and the chain of events leading to it, using a biological approach but with limited success. This robust, systematic genome wide study is simply letting the genetics tell us what are the key genes in KD pathogenesis. Without this research these newly discovered genes of interest might have continued to remain hidden."

Kawasaki disease is an unusual and serious illness of young children that causes high fever, rash, red eyes and lips, swollen glands, and swollen hands and feet with peeling skin. The disease also causes damage of the coronary arteries in a quarter of untreated children and may increase the risk of atherosclerosis in early adulthood. The cause of Kawasaki disease is unknown, but it seems to be due to an infection in susceptible children. There is no diagnostic test for Kawasaki disease, and current treatment fails to prevent coronary damage in at least one in 10-20 children and death in one in 1,000 children.

This study found that genes involved in cardiovascular function and inflammation may be particularly important and some seem to function together. The authors consider that these findings will lead to new diagnostics and better treatment and may be informative about adult cardiovascular disease as well.

The findings do not yet prove that the new genes are functionally involved. Other genetic variants may be important, especially in different ethnic groups. The authors are planning detailed studies of the function of these genes and larger collaborative studies including East Asian populations, who are at particular risk of Kawasaki disease, with 1 in 150 Japanese children affected.

"So now it is time to come back to the biology and study the genes and the pathways and their role in KD pathogenesis," explained associate project scientist Chisato Shimizu, M.D., Kawasaki Disease Research Center, UC San Diego School of Medicine. "Most importantly, we will be able to use these data to help us predict which children with Kawasaki disease are at most risk for heart disease from their KD."

"Our laboratory is the focal point where the combination of academic research and clinical investigation lead to better treatment and patient outcome," explained Kawasaki Disease Research Center Assistant Director, Adriana Tremoulet, M.D., assistant adjunct professor, UC San Diego Department of Pediatrics and Rady Children's Hospital. "UC San Diego represents the entire U.S. genetics consortium. Through a grant from the NIH we have been able to support DNA collection in Los Angeles, Hawaii, Chicago, and Boston, as well as Japan and Finland. We coordinate the entire U.S. KD genetics effort and are the conduit for U.S. DNA to join the international effort based in Singapore."

Burns says the next steps include "drilling down" on candidate genes and pathways that were discovered in the genome-wide analysis. This detailed analysis will identify the exact genetic differences that influence disease susceptibility and outcome.

"We can already see a way in which this suggests a new treatment for KD that may be much less expensive than the current treatment with IVIG (intravenous immunoglobulin)," said Burns.

Kim Edwards | EurekAlert!
Further information:
http://www.ucsd.edu
http://www.pediatrics.ucsd.edu/kawasaki

More articles from Health and Medicine:

nachricht Light beam replaces blood test during heart surgery
28.02.2017 | University of Central Florida

nachricht Cells adapt ultra-rapidly to zero gravity
28.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>