Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clues to diabetes susceptibility in a snip (SNP)

01.12.2008
A genetic variant highly associated with diabetes is found in both East Asian and European populations

A RIKEN-led research group has uncovered a previously unreported locus or area of chromosome in which single nucleotide polymorphisms (SNPs) are highly associated with type 2 diabetes in populations of East Asian and European descent.

The finding could lead to a diagnostic test. And studies of the principal gene’s role in the development and progress of the disease could reveal useful target compounds for drugs to prevent or treat the condition.

Type 2 or adult onset diabetes affects more than 200 million people worldwide and that number is increasing. What makes people susceptible is not fully clear, but a combination of many genes and environmental factors is likely. Recent advances in the technology to find specific SNPs in an entire individual genome have made it possible to determine which SNPs or groups of SNPs are associated with particular diseases. Several studies involving type 2 diabetics in the US and Europe have already picked out at least 16 loci associated with their condition, but no one had investigated entire individual genomes of people of East Asian ancestry.

So researchers from RIKEN’s Center for Genomic Medicine in Yokohama and institutes in Japan, Denmark and Singapore compared SNPs of type 2 diabetics with those of non-diabetics in groups from those three countries. They report their findings in a letter to Nature Genetics1.

Initially the researchers conducted a genome-wide association study in Japan of more than 207,000 SNPs. Analyzing their results statistically, they selected the 8,323 SNPs most associated with the condition, and tested these further. Eventually they pared their original number of SNPs down to six from three loci. Two of those loci were known to be highly associated with type 2 diabetes from the earlier studies, but one, based around the gene KCNQ1, was new. When tested in populations of East Asian descent in Singapore and European descent in Denmark, it was highly associated with type 2 diabetes in them as well.

KCNQ1 encodes a protein involved in forming pores enabling potassium ions to move out of cells. Mutations in the gene are reported to cause significant problems in the heart, but also in the inner ear, stomach and several other organs.

“We now want to examine the role of KCNQ1 in type 2 diabetes using animal models or cell cultures,” says project leader Shiro Maeda. “And we wish to continue our studies to discover more susceptibility genes.”

Reference

1. Unoki, H., Takahashi, A., Kawaguchi, T., Hara, K., Horikoshi, M., Andersen, G., Ng, D.P.K., Holmkvist, J., Borch-Johnsen, K., Jørgensen, T., et al. SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nature Genetics 40, 1098–1102 (2008).

The corresponding author for this highlight is based at the RIKEN Laboratory for Endocrinology and Metabolism

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/596/
http://www.researchsea.com

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>