Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New clue to Parkinson's

15.08.2011
Shape of key protein surprises researchers

A new study finds that a protein key to Parkinson's disease has likely been mischaracterized. The protein, alpha-synuclein, appears to have a radically different structure in healthy cells than previously thought, challenging existing disease paradigms and suggesting a new therapeutic approach.

"Our data show that alpha-synuclein was essentially mistakenly characterized as a natively unfolded protein that lacked structure," said Dennis Selkoe, the Vincent and Stella Coates Professor of Neurologic Diseases at Brigham and Women's Hospital and Harvard Medical School and senior author of the paper, published online August 14 in the journal Nature. "We think this discovery has fundamental importance for understanding both how alpha-synuclein normally functions and how it becomes altered in Parkinson's."

When it comes to proteins, function follows form. A protein consists of a chain of chemical building blocks (amino acids), typically folded into an exquisite three-dimensional structure. Each twist and turn in the chain contributes to the protein's unique properties and behavior, so it's critical for scientists to accurately describe the arrangement of folds. But sometimes, they get the entire pattern wrong.

The new study suggests that's just what happened with alpha-synuclein, the protein that forms clumps called Lewy bodies in the brains of patients with Parkinson's and certain related disorders. Scientists have long assumed that alpha-synuclein occurs in healthy cells as a single, randomly-coiled chain that resembles a writhing snake. Selkoe's team has proven, however, that the structure is far more orderly and sophisticated.

"This will open some new therapeutic doors," said first author Tim Bartels, a postdoctoral researcher in Selkoe's lab. "Everybody thought the protein was unfolded, so pharmaceutical companies have focused on preventing unfolded alpha-synuclein from aggregating."

He recommends a new strategy—keeping the folded form of the protein stable.

How did the true structure of alpha-synuclein in healthy cells evade researchers for so long? Scientists knew that alpha-synuclein was abundant in the brain before they made the connection between the protein and Parkinson's disease in 1997. Experiments in the mid-1990s indicated the protein was stable when exposed to conditions that typically disrupt the structure of most other proteins.

Consider what happens when an egg is boiled: the liquid proteins of the egg white are precipitated by the heat and congeal into a dense white mass. But alpha-synuclein seemed to behave like an egg that remains entirely viscous despite many minutes on the stove. It didn't precipitate and congeal when boiled. This apparent hardiness made alpha-synuclein easy to work with in the lab. Scientists could boil the protein, even douse it with detergents and other rather harsh chemicals, while ostensibly leaving its structure intact.

Bartels and Selkoe wondered whether labs might be overlooking important aspects of the protein's natural biology by handling it so roughly, so they designed experiments to probe alpha-synuclein's behavior using gentler methods. They also bucked a trend by working with protein gathered from human cells rather than from engineered bacteria. The goal was to gain new insight into alpha-synuclein's clustering behavior.

The initial data took them by surprise. Single, isolated chains of alpha-synuclein—the "monomeric" form of the protein—were absent from their cellular samples.

"I did my PhD on alpha-synuclein, and—like the rest of the world—I assumed that it occurs natively as a monomeric, unfolded protein, so I was shocked," said Bartels.

Using special gels and other methods that are less disruptive to a protein's form, the team conducted additional experiments to explore the structure of alpha-synuclein in healthy blood and brain cells. The native protein was exactly four times the predicted weight of a single alpha-synuclein chain, suggesting that cells package four alpha-synuclein chains together as a "tetrameric" unit. Applying sophisticated equipment and techniques, the team validated the molecular weight of the package, confirmed that it consists solely of alpha-synuclein chains and showed that these four chains have orderly twists.

The researchers observed tetrameric alpha-synuclein to be the dominant form of the protein in healthy human cells, and remarkably resistant to aggregation. The tetramers maintained their original structure for 10 days, the entire length of the experiment, while the team monitored their samples for clustering behavior. In stark contrast, alpha-synuclein monomers began to form clusters after a few days and ended up as large aggregates called amyloid fibers. The Lewy bodies that accumulate in the brains of patients with Parkinson's consist mainly of such amyloid fibers.

"We hypothesize that the folded protein must disassemble into monomers before large pathological aggregates can form," said Selkoe, who is also co-director of the Center for Neurologic Diseases at Brigham and Women's Hospital. "If we can keep alpha-synuclein tetrameric and soluble, we might be able to prevent the neuronal degeneration of Parkinson's disease from progressing—or perhaps from even developing."

The finding could also prove useful in the quest for new diagnostics. Perhaps ratios of tetrameric protein to monomeric protein in blood cells, serum or spinal fluid will correspond to different propensities or stages of the disease.

Finally, the discovery of the folded tetramers should help labs to uncover the function of alpha-synuclein in healthy cells, which is still much debated. This functional knowledge should, in turn, contribute to researchers' understanding of Parkinson's and other diseases characterized by the formation of Lewy bodies rich in aggregated alpha-synuclein.

This research was funded by the National Institute of Neurological Disorders and Stroke.

Katie DuBoff | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>