Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clostridium difficile: Restricting antibiotics could be key to fighting 'superbug'

26.09.2013
New ways are needed to fight the infection Clostridium difficile and better use of antibiotics could be key, according to the authors of ground-breaking research.

In a unique United Kingdom study, the team from the University of Leeds, Oxford University Hospitals NHS Trust and Oxford University, mapped all cases of Clostridium difficile (C.diff) in Oxfordshire over a three-year period (2008 to 2011).

C. diff causes severe diarrhoea, cramps and sometimes life-threatening complications, and has traditionally been thought to be transmitted within hospitals from other sick C.diff patients.

The research found that less than one in five cases of the so called "hospital superbug" were likely to have been caught from other hospital cases of C.diff, where the focus of infection control measures has been.

Researchers also found the total number of cases of C.diff, whether acquired from other sick patients in hospitals or acquired from elsewhere, fell over the three-year period. As a result, the research suggested stringent infection control measures in hospitals were not the most significant factor in curbing the infection.

Professor Mark Wilcox, of the University of Leeds and Leeds Teaching Hospitals NHS Trust, leads on C. diff infection for Public Health England and was member of the study team.

He said: "This is a landmark study in understanding how patients with C. diff are linked. The results have an important message for infection teams. Continuing on the same path to controlling C.diff will not ensure that all preventable cases are avoided. New measures are needed to prevent this bug spreading and being provoked to cause infection."

The study, supported by the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, the Wellcome Trust and the Medical Research Council, was published today in the New England Journal of Medicine.

Tim Peto, study author and Professor of Infectious Diseases at the University of Oxford, said: "We must be clear, good infection control measures have helped minimise transmission rates in hospitals. However, what our study has shown is the vast majority of cases were not caught from other hospital cases and the total number of cases has fallen, so other factors, in addition to hospital infection control, must be at work."

Prof Peto said that during an overlapping period to the study, the use of antibiotics fell across 175 English hospitals. He added: "C.diff is resistant to antibiotics and that is the key."

Dr David Eyre, co-author of the study, said: "People usually become ill with C. diff after taking antibiotics, because antibiotics don't just kill "bad" bugs but also "good" bugs in the gut, allowing the resistant C. diff to take over. One explanation for all types of C. diff going down is that using antibiotics more carefully can prevent people becoming ill with C. diff even if they are exposed to it.

"Our study indicates that restricting the use of antibiotics may be more effective in reducing the number people who fall ill with C.diff than lowering transmission rates through infection control measures."

By assessing the genetic variation between C.diff cases, the team identified those cases that were matched and were likely to be linked. By adding hospital records and the community movements of each case, they worked out if that transmission was likely to have happened as a result of hospital or patient contact.

They found that 35 per cent of cases were so genetically similar that they were likely to be caused by direct transmission. Of that group, just over half (55%) could be linked by hospital contact. In total, only 19 per cent of all cases could be clearly linked to hospital transmission from other sick patients with C.diff.

Prof Peto said: "Additionally, 45 per cent of all cases were so different that they could not have come from another sick C.diff patient in Oxfordshire. These results suggest that there is a large, unknown reservoir of C.diff bugs that can cause infection and more work needs to be done to identify these sources.

Further information

Mark Wilcox is available for interview. Please contact Rachel Barson, Press Officer, Communications, on 0113 34 32060 or email R.Barson@leeds.ac.uk

Professor Tim Peto and Dr David Eyre are also available for interview. Please contact Chris Buratta, Oxford University Hospital NHS Trust, or on 01865 223070 or email christopher.buratta@ouh.nhs.uk

Rachel Barson | EurekAlert!
Further information:
http://www.leeds.ac.uk

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>