Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Closer to a cure for eczema

Scientists have found that a strain of yeast implicated in inflammatory skin conditions, including eczema, can be killed by certain peptides and could potentially provide a new treatment for these debilitating skin conditions. This research is published today in the Society for Applied Microbiology's journal, Letters in Applied Microbiology.

20% of children in the UK suffer from atopic eczema and whilst this usually clears up in adolescence, 7% of adults will continue to suffer throughout their lifetime. Furthermore, this type of eczema, characterized by dry, itchy, flaking skin, is increasing in prevalence. Whilst the cause of eczema remains unknown, one known trigger factor is the yeast Malassezia sympodialis.

This strain of yeast is one of the most common skin yeasts in both healthy individuals and those suffering from eczema. The skin barrier is more fragile and often broken in those suffering from such skin conditions, and this allows the yeast to cause infection which then further exacerbates the condition. Scientists at Karolinska Institute in Sweden looked for a way to kill Malassezia sympodialis without harming healthy human cells.

The researchers looked at the effect on the yeast of 21 peptides which had either; cell-penetrating or antimicrobial properties. Cell-penetrating peptides are often investigated as drug delivery vectors and are able to cross the cell membrane, although the exact mechanism for this is unknown. Antimicrobial peptides, on the other hand, are natural antibiotics and kill many different types of microbe including some bacteria, fungi and viruses.

Tina Holm and her colleagues at Stockholm University and Karolinska Institute, added these different peptides types to separate yeast colonies and assessed the toxicity of each peptide type to the yeast. They found that six of the 21 peptides they tested successfully killed the yeast without damaging the membrane of keratinocytes, human skin cells.

Tina commented "Many questions remain to be solved before these peptides can be used in humans. However, the appealing combination of being toxic to the yeast at low concentrations whilst sparing human cells makes them very promising as antifungal agents. We hope that these peptides in the future can be used to ease the symptoms of patients suffering from atopic eczema and significantly increase their quality of life."

The next step will be to further examine the mechanism(s) used by the peptides to kill yeast cells, in order to develop a potential treatment for eczema and other skin conditions.

Clare Doggett | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>