Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate Change Analysis Predicts Increased Fatalities from Heat Waves

04.05.2011
Global climate change is anticipated to bring more extreme weather phenomena such as heat waves that could impact human health in the coming decades.

An analysis led by researchers at the Johns Hopkins Bloomberg School of Public Health calculated that the city of Chicago could experience between 166 and 2,217 excess deaths per year attributable to heat waves using three different climate change scenarios for the final decades of the 21st century. The study was published May 1 edition of the journal Environmental Health Perspectives.

“Our study looks to quantify the impact of increased heat waves on human mortality. For major a U.S. city like Chicago, the impact will likely be profound and potentially devastating,” said Roger Peng, PhD, lead author of the study and associate professor in the Department of Biostatistics at the Bloomberg School of Public Health. “We would expect the impact to be less severe with mitigation efforts including lowering CO2 emissions.”

For the analysis, Peng and his colleagues developed three climate change scenarios for 2081 to 2100. The scenarios were based on estimates from seven global climate change models and from mortality and air pollution data for the city of Chicago from 1987 to 2005. The data were limited to the warm season from May to October of each year.

From 1987 to 2005, Chicago experienced 14 heat waves lasting an average of 9.2 days, which resulted in an estimated 53 excess deaths per year. In the future, the researchers calculated that excess mortality attributable to heat waves to range from 166 to 2,217 per year. According to the researchers, the projections of excess deaths could not be explained by projected increases in city population alone. The exact change due to global warming in annual mortality projections, however, is sensitive to the choice of climate model used in analysis.

“It's very difficult to make predictions, but given what we know now—absent any form of adaptation or mitigation—our study shows that climate change will exacerbate the health impact of heat waves across a range of plausible future scenarios,” added Peng.

Authors of “Towards a Quantitative Estimate of Future Heat Wave Mortality Under Global Climate Change” include Jennifer F. Bobb of the Bloomberg School of Public Health, Claudia Tebaldi of the University of British Columbia, Larry McDaniel of the National Center for Atmospheric Research, Michelle L. Bell of Yale University and Francesca Dominici of Harvard School of Public Health.

The research was supported by grants from the National Institute of Environmental Health Sciences and Environmental Protection Agency.

Media contact: Tim Parsons, director of Public Affairs, at 410-955-7619 or tmparson@jhsph.edu

Tim Parsons | EurekAlert!
Further information:
http://www.jhsph.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>