Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cleveland Clinic study shows vitamin E may decrease cancer risk in Cowden syndrome patients

18.09.2012
Cleveland Clinic researchers have discovered that vitamin E may prevent cancer in patients with an under-recognized genetic disorder.

Several genetic mutations are known to be present in Cowden Syndrome (CS) – a disease that predisposes individuals to several types of cancers, including breast and thyroid cancers.

One type of mutation in the succinate dehydrogenase (SDH) genes may be responsible for cancer development, according to research by Charis Eng, M.D., Ph.D., Hardis Chair and Director of the Genomic Medicine Institute and Director of its Center for Personalized Genetic Healthcare at Lerner Research Institute, published today in Clinical Cancer Research.

Dr. Eng discovered that mutations in SDH genes, responsible for energy production, result in an accumulation of reactive oxygen species (ROS). These changes damage the cells and make them resistant to apoptosis – our bodies' natural method of weeding out cancerous cells.

However, when vitamin E was applied to the mutant cells, ROS accumulation decreased, as well as the accompanying cellular damage.

"These findings support the notion that vitamin E may be useful as an anti-cancer therapeutic adjunct or preventive agent, especially for CS patients harboring SDH mutations, and its protective properties should be further explored," said Dr. Eng.

CS predisposes individuals to several types of cancers – an 85 percent lifetime risk of breast cancer, a 35 percent risk for epithelial thyroid cancer, and increased risk of other cancers as well. Approximately one in 200,000 people are affected by CS.

Dr. Eng's research was supported by the Breast Cancer Research Foundation and National Institutes of Health National Cancer Institute (NIH/NCI) grant P01CA124570-04S1.

Editor's Note: Cleveland Clinic News Service is available to provide broadcast-quality interviews and B-roll upon request.

About Cleveland Clinic

Cleveland Clinic is a nonprofit multispecialty academic medical center that integrates clinical and hospital care with research and education. Located in Cleveland, Ohio, it was founded in 1921 by four renowned physicians with a vision of providing outstanding patient care based upon the principles of cooperation, compassion and innovation. Cleveland Clinic has pioneered many medical breakthroughs, including coronary artery bypass surgery and the first face transplant in the United States. U.S. News & World Report consistently names Cleveland Clinic as one of the nation's best hospitals in its annual "America's Best Hospitals" survey. About 2,800 full-time salaried physicians and researchers and 11,000 nurses represent 120 medical specialties and subspecialties. Cleveland Clinic Health System includes a main campus near downtown Cleveland, eight community hospitals and 18 Family Health Centers in Northeast Ohio, Cleveland Clinic Florida, the Lou Ruvo Center for Brain Health in Las Vegas, Cleveland Clinic Canada, and opening in 2013, Cleveland Clinic Abu Dhabi. In 2010, there were 4 million visits throughout the Cleveland Clinic health system and 167,000 hospital admissions. Patients came for treatment from every state and from more than 100 countries.

Follow us at www.twitter.com/ClevelandClinic.

Stephanie Jansky | EurekAlert!
Further information:
http://www.ccf.org
http://www.clevelandclinic.org

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>