Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cisplatin-resistant cancer cells sensitive to experimental anticancer drugs, PARP inhibitors

03.04.2013
Poly (ADP-ribose) polymerase inhibitors may be a novel treatment strategy for patients with cancer that has become resistant to the commonly used chemotherapy drug cisplatin, according to data from a preclinical study published in Cancer Research, a journal of the American Association for Cancer Research.

"Cisplatin is one of the most widely used conventional, anticancer chemotherapy drugs," said Guido Kroemer, M.D., Ph.D., professor at University Paris Descartes in Paris, France. "Unfortunately, most patients respond only transiently to cisplatin therapy because their cancer cells develop ways to resist the effects of the drug."

Kroemer and colleagues set out to identify the biochemical changes that arise as cancer cells become resistant to cisplatin in the hope that the information could provide clues to potential new therapies. They focused their study on non-small cell lung cancer (NSCLC) cells because NSCLC is the leading cause of cancer-related morbidity and mortality worldwide and patients with NSCLC are frequently treated with cisplatin, according to Kroemer.

The researchers found that most NSCLC cell lines resistant to cisplatin had high levels of the protein poly (ADP-ribose) polymerase 1 (PARP1) and elevated amounts of poly (ADP-ribosyl) (PAR). In addition, they found that the PARP1 was hyperactivated. They observed similar results for cisplatin-resistant mesothelioma, ovarian cancer and cervical cancer cell lines.

When cisplatin-resistant NSCLC cell lines with high levels of hyperactivated PARP1 and PAR were exposed to each of two distinct PARP inhibitors, the cell lines initiated a cellular process that resulted in their death. Levels of PAR were more predictive of response to PARP inhibitors than were levels of PARP1 itself, suggesting that PAR may be an effective biomarker of response to cisplatin, according to Kroemer.

He and his colleagues then examined whether treatment with a PARP inhibitor affected the growth of tumors in mice xenografted with human NSCLC cell lines. They found that treatment significantly slowed tumor growth.

"Our data show that in most cases, cisplatin resistance is linked to stereotyped biochemical changes in cancer cells that render them vulnerable to PARP inhibitors," said Kroemer. "This has clear implications for new treatment regimens and for developing biomarkers of response to cisplatin. We are following up these exciting clinical possibilities in our laboratory."

Follow the AACR on Twitter: @aacr

Follow the AACR on Facebook: http://www.facebook.com/aacr.org

About the American Association for Cancer Research

Founded in 1907, the American Association for Cancer Research (AACR) is the world's first and largest professional organization dedicated to advancing cancer research and its mission to prevent and cure cancer. AACR membership includes more than 34,000 laboratory, translational and clinical researchers; population scientists; other health care professionals; and cancer advocates residing in more than 90 countries. The AACR marshals the full spectrum of expertise of the cancer community to accelerate progress in the prevention, biology, diagnosis and treatment of cancer by annually convening more than 20 conferences and educational workshops, the largest of which is the AACR Annual Meeting with more than 17,000 attendees. In addition, the AACR publishes eight peer-reviewed scientific journals and a magazine for cancer survivors, patients and their caregivers. The AACR funds meritorious research directly as well as in cooperation with numerous cancer organizations. As the scientific partner of Stand Up To Cancer, the AACR provides expert peer review, grants administration and scientific oversight of team science and individual grants in cancer research that have the potential for near-term patient benefit. The AACR actively communicates with legislators and policymakers about the value of cancer research and related biomedical science in saving lives from cancer. For more information about the AACR, visit http://www.AACR.org.

Jeremy Moore | EurekAlert!
Further information:
http://www.aacr.org

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>