Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cigarette smoking increases production of mucus in patients with bronchitis

18.02.2011
Cigarette smoking has been linked with overproduction of mucus associated with chronic bronchitis, according to a study conducted by researchers in New Mexico. The study indicates cigarette smoke suppresses a protein that causes the natural death of mucus-producing cells in the airways of bronchitis patients.

The findings were published online ahead of the print edition of the American Thoracic Society's American Journal of Respiratory and Critical Care Medicine.

"Although it is known that chronic mucus secretion is a hallmark of chronic bronchitis, the mechanisms underlying this condition are largely unknown," said Yohannes Tesfaigzi, PhD, director of the COPD Program at Lovelace Respiratory Research Institute in Albuquerque. "This study shows that the airway cells that secrete mucus are sustained by cigarette smoke, which suppresses a cell death-inducing protein called Bik."

Chronic bronchitis is commonly associated with chronic obstructive pulmonary disease (COPD). Cigarette smoking is the leading cause of disease for 15 million individuals with COPD in the United States alone and for over 200 million people worldwide.

"Previous studies have shown overproduction of mucus cells is common in the large and small airways of cigarette smokers," Dr. Tesfaigzi said. "This overproduction in the small airways is responsible for airway obstruction and reduced lung function and in the pathogenesis of acute exacerbations of COPD.

"Our previous studies show that following inflammatory responses, up to 30 percent of cells lining the airways undergo death and return to the original cell numbers," he continued. "This cell death is aided in part by proteins, including Bik. Disruption of this recovery process may lead to persistent elevation of mucus cell numbers and contribute to airway obstruction found in chronic lung diseases such as chronic bronchitis.

"Based on these earlier findings we wanted to determine if Bik may be responsible for sustained mucus cell growth in the airways of cigarette smokers," he said.

To test their hypothesis, the researchers examined both human airway tissue samples and mouse models. Human samples were derived from autopsy tissues and from bronchial brushings taken from individuals with chronic bronchitis as well as healthy controls. Chronic bronchitis was defined as a daily cough with phlegm production for 3 consecutive months, 2 years in a row.

Mice were exposed to cigarette smoke for six hours per day, five days per week for three weeks. Following exposure, lung tissue samples were collected and examined for the presence of Bik.

The researchers determined Bik was significantly reduced in bronchial brushings of patients with chronic bronchitis compared to non-diseased controls. Examination of autopsy tissues confirmed the finding. Mice exposed to cigarette smoking also had significantly reduced Bik levels and increased numbers of mucus-producing cells.

In another arm of the study, mice exposed to cigarette smoke were subsequently exposed to filtered air for 60 days and evaluated for Bik levels to determine whether Bik remains suppressed even after cessation of cigarette smoking. They found mice exposed to cigarette smoke still exhibited significantly lower levels of Bik, even after being exposed to filtered air.

"We found that cigarette smoke suppresses Bik levels in humans and in mice models, and mucus cells increased threefold in mice exposed to cigarette smoke," he said. "Moreover, the mouse study suggests that Bik remains suppressed in former cigarette smokers that have persistent chronic bronchitis. In humans, Bik was reduced even more in former smokers who had chronic bronchitis compared to former smokers without.

"The possible therapeutic value of these findings was tested by restoring Bik levels in the airways of cigarette smoke-exposed mice or human airway epithelial cells using genetic approaches," Dr. Tesfaigzi said. "This approach reduced the epithelial cells in cigarette smoke-exposed mice.

"These studies lay the foundation to investigate therapies that may restore expression of Bik and reduce the numbers of mucus-producing cells," he added. "This method may reduce excess secretion of mucus and the airway blockages in patients with chronic bronchitis."

Brian Kell | EurekAlert!
Further information:
http://www.thoracic.org

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>