Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How chronic obstructive pulmonary disease increases risk of lung cancer

25.07.2012
In addition to the well-known risk factor of smoking, chronic obstructive pulmonary disease (COPD) increases lung cancer risk.

A University of Colorado Cancer Center study published in the journal Cancer Prevention Research details one novel mechanism of this risk: long-term oxygen depletion stimulates signals that promote tumor growth.

In addition, this early study – performed in animal models – shows that tumors fueled by these COPD-induced signals may be especially susceptible to prevention or perhaps even treatment with drugs that turn off these same signals, namely VEGFR-2 and EGFR inhibitors.

“At least in animal models, this study shows an important pathway activated in lung tumors arising in poorly oxygenated regions of the lung that isn’t activated to nearly the same degree in other lung cancers,” says York Miller, MD, investigator at the CU Cancer Center and professor in the Department of Pulmonary Sciences and Critical Care Medicine at the University of Colorado School of Medicine and Denver Veterans Affairs Medical Center, the paper’s senior author.

“There are probably other mechanisms driving lung cancer in COPD as well – for example, inflammation is also very likely playing in – but this paper shows that the hypoxic sensing pathway is specifically activated in these COPD lung cancer models and that this sensing pathway is to a large degree driving tumor growth,” Miller says.

Specifically, his study used animal models designed to develop cancer, which the group placed in high altitude chambers set to mimic the chronic oxygen depletion of found in parts of the lung affected by COPD. Mice in the hypoxic condition developed larger tumors than mice given normal oxygen, but, according to Miller, what was especially striking is the reason for this tumor growth.

“We saw that tumor growth in the hypoxic environment – which mimics that of COPD conditions including chronic bronchitis and emphysema – is due to signaling by HIF-2a. This HIF-2a in turn activates cancer growth promoting mechanisms including VEGF and the EGFR ligand, TGFa, which are growth factors involved in stimulating cell proliferation and the development of new blood vessels,” Miller says.

Likewise, just as tumors that arise in hypoxic conditions do so through turning on pathways that lead to the over-production of VEGF and TGFa, so too are these tumors especially susceptible to cancer therapies that block these growth factors. Sure enough, animal models given the drug vandetanib – a combined VEGFR/EGFR inhibitor – failed to develop cancer under hypoxic conditions.

“Chemoprevention hasn’t been done successfully for lung cancer,” Miller says, “but this approach of VEGF/EGFR inhibitors for patients with COPD and extreme lung cancer risk may be something that should be explored further.”

Miller imagines the next step is a review of patient records to discover if COPD lung cancer patients who happened to be treated with VEGF/EGFR inhibitors, in fact, had better tumor response than patients with normal lung function and similar tumors.

“Right now it’s not a treatment,” Miller says, “but it’s an exciting line of inquiry.”

Funding provided in part by NCI P50 CA58187, NCI RO1 CA164780 and a VA Merit Review Award.

Garth Sundem | EurekAlert!
Further information:
http://www.ucdenver.edu
http://www.coloradocancerblogs.org/news/how-chronic-obstructive-pulmonary-disease-increases-risk-of-lung-cancer

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>