Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How chronic obstructive pulmonary disease increases risk of lung cancer

25.07.2012
In addition to the well-known risk factor of smoking, chronic obstructive pulmonary disease (COPD) increases lung cancer risk.

A University of Colorado Cancer Center study published in the journal Cancer Prevention Research details one novel mechanism of this risk: long-term oxygen depletion stimulates signals that promote tumor growth.

In addition, this early study – performed in animal models – shows that tumors fueled by these COPD-induced signals may be especially susceptible to prevention or perhaps even treatment with drugs that turn off these same signals, namely VEGFR-2 and EGFR inhibitors.

“At least in animal models, this study shows an important pathway activated in lung tumors arising in poorly oxygenated regions of the lung that isn’t activated to nearly the same degree in other lung cancers,” says York Miller, MD, investigator at the CU Cancer Center and professor in the Department of Pulmonary Sciences and Critical Care Medicine at the University of Colorado School of Medicine and Denver Veterans Affairs Medical Center, the paper’s senior author.

“There are probably other mechanisms driving lung cancer in COPD as well – for example, inflammation is also very likely playing in – but this paper shows that the hypoxic sensing pathway is specifically activated in these COPD lung cancer models and that this sensing pathway is to a large degree driving tumor growth,” Miller says.

Specifically, his study used animal models designed to develop cancer, which the group placed in high altitude chambers set to mimic the chronic oxygen depletion of found in parts of the lung affected by COPD. Mice in the hypoxic condition developed larger tumors than mice given normal oxygen, but, according to Miller, what was especially striking is the reason for this tumor growth.

“We saw that tumor growth in the hypoxic environment – which mimics that of COPD conditions including chronic bronchitis and emphysema – is due to signaling by HIF-2a. This HIF-2a in turn activates cancer growth promoting mechanisms including VEGF and the EGFR ligand, TGFa, which are growth factors involved in stimulating cell proliferation and the development of new blood vessels,” Miller says.

Likewise, just as tumors that arise in hypoxic conditions do so through turning on pathways that lead to the over-production of VEGF and TGFa, so too are these tumors especially susceptible to cancer therapies that block these growth factors. Sure enough, animal models given the drug vandetanib – a combined VEGFR/EGFR inhibitor – failed to develop cancer under hypoxic conditions.

“Chemoprevention hasn’t been done successfully for lung cancer,” Miller says, “but this approach of VEGF/EGFR inhibitors for patients with COPD and extreme lung cancer risk may be something that should be explored further.”

Miller imagines the next step is a review of patient records to discover if COPD lung cancer patients who happened to be treated with VEGF/EGFR inhibitors, in fact, had better tumor response than patients with normal lung function and similar tumors.

“Right now it’s not a treatment,” Miller says, “but it’s an exciting line of inquiry.”

Funding provided in part by NCI P50 CA58187, NCI RO1 CA164780 and a VA Merit Review Award.

Garth Sundem | EurekAlert!
Further information:
http://www.ucdenver.edu
http://www.coloradocancerblogs.org/news/how-chronic-obstructive-pulmonary-disease-increases-risk-of-lung-cancer

More articles from Health and Medicine:

nachricht Penn studies find promise for innovations in liquid biopsies
30.03.2017 | University of Pennsylvania School of Medicine

nachricht 'On-off switch' brings researchers a step closer to potential HIV vaccine
30.03.2017 | University of Nebraska-Lincoln

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>