Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cholesterol-lowering medication accelerates depletion of plaque in arteries

14.12.2011
New study reveals molecular mechanism promoting the breakdown of plaque by statins

In a new study, NYU Langone Medical Center researchers have discovered how cholesterol-lowering drugs called statins promote the breakdown of plaque in the arteries. The study was published online by the journal PLoS One on December 6, 2011.

The findings support a large clinical study that recently showed patients taking high-doses of the cholesterol-lowering medications not only reduced their cholesterol levels but also reduced the amount of plaque in their arteries. However, until now researchers did not fully understand how statins could reduce atherosclerosis, the accumulation of fat and cholesterol that hardens into plaque in arteries, a major cause of mortality in Western countries. High blood cholesterol is a major culprit in atherosclerosis. As a result of narrowing arteries, blood clots can form or plaque can break off causing blockages in vessels. This can lead to a potentially fatal heart attack or stroke.

"Our new research shows statins actually promote the regression of atherosclerosis by altering the expression of a specific cell surface receptor within plaque cells," said co-author of the study, Edward Fisher, MD, PhD, Leon H. Charney Professor of Cardiovascular Medicine and director of the Marc and Ruti Bell Vascular Biology Program at NYU Langone Medical Center. "This molecular phenomenon helps dissolve plaque by expelling coronary artery disease-causing cells from the plaque lining the arteries."

The NYU Langone study reveals how statins promote the transformation of arterial plaques by activating a protein that sits on the surface of macrophages, immune cells that are prevalent in plaque. The immune system sends macrophages to clean up cholesterol deposits in arteries, but once they fill up with the bad form of cholesterol they get stuck in the arteries, triggering the body's inflammatory response. The bloated macrophages then become major components of plaque lining artery walls.

In the study, researchers show in mouse models that statins activate the cell surface protein receptor C-C chemokine receptor type 7 (CCR7), which in turn activates a cell-signaling pathway forcing macrophages out of plaque. In addition, the researchers show that macrophages only leave plaque when CCR7 is expressed. Therefore, regression of plaque is dependent on CCR7, the researchers concluded. The statins appeared to directly regulate and enhance CCR7 gene expression and induce macrophage cells to leave the plaque. CCR7 is a widely studied protein associated with the migration of immune cells and its expression is a marker of the presence of macrophages.

Statins are potent inhibitors of HMG-CoA reductase, the enzyme that plays a central role in the production of cholesterol. Statins have been shown to reduce the risk of cardiovascular disease and cardiac events like heart attack. Cholesterol is needed for all proper cellular function. High-density lipoprotein cholesterol (HDL-C), good cholesterol, helps reduce the risk of atherosclerosis by taking cholesterol away from cells. Low density lipoprotein (LDL-C), bad cholesterol, carries cholesterol to cells. However, an LDL overload in the body increases a person's risk of cardiovascular disease including atherosclerosis.

"Our experimental findings indicate that statins, in addition to lowering LDL cholesterol, have clinical benefits of accelerating plaque regression by a newly discovered mechanism," said co-author Michael Garabedian, PhD, Professor, Department of Microbiology and Urology at NYU Langone Medical Center. "It's possible that these drugs could possibly be more beneficial to a wider population of patients potentially reducing the overall lifetime burden of plaque and the prevention of atherosclerosis."

The study was a collaboration by NYU Langone Medical Center's Department of Medicine, Division of Cardiology, the Department of Microbiology, Schneider Children's Medical Center of Israel and the Centre for Clinical Pharmacology, Division of Medicine at the University College of London in the United Kingdom. This research study was supported by funding from the National Institutes of Health, Astra Zeneca and Pfizer.

About NYU Langone Medical Center

NYU Langone Medical Center, a world-class, patient-centered, integrated, academic medical center, is one on the nation's premier centers for excellence in clinical care, biomedical research and medical education. Located in the heart of Manhattan, NYU Langone is composed of three hospitals – Tisch Hospital, its flagship acute care facility; the Rusk Institute of Rehabilitation Medicine, the world's first university-affiliated facility devoted entirely to rehabilitation medicine; and the Hospital for Joint Diseases, one of only five hospitals in the nation dedicated to orthopaedics and rheumatology – plus the NYU School of Medicine, which since 1841 has trained thousands of physicians and scientists who have helped to shape the course of medical history. The medical center's tri-fold mission to serve, teach and discover is achieved 365 days a year through the seamless integration of a culture devoted to excellence in patient care, education and research. For more information, go to www.NYULMC.org.

Lauren Woods | EurekAlert!
Further information:
http://www.nyumc.org

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Automated driving: Steering without limits

OmniSteer project to increase automobiles’ urban maneuverability begins with a € 3.4 million budget

Automobiles increase the mobility of their users. However, their maneuverability is pushed to the limit by cramped inner city conditions. Those who need to...

Im Focus: Microscopy: Nine at one blow

Advance in biomedical imaging: The University of Würzburg's Biocenter has enhanced fluorescence microscopy to label and visualise up to nine different cell structures simultaneously.

Fluorescence microscopy allows researchers to visualise biomolecules in cells. They label the molecules using fluorescent probes, excite them with light and...

Im Focus: NASA's ICESat-2 equipped with unique 3-D manufactured part

NASA's follow-on to the successful ICESat mission will employ a never-before-flown technique for determining the topography of ice sheets and the thickness of sea ice, but that won't be the only first for this mission.

Slated for launch in 2018, NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) also will carry a 3-D printed part made of polyetherketoneketone (PEKK),...

Im Focus: Sinking islands: Does the rise of sea level endanger the Takuu Atoll in the Pacific?

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister picture is being painted evoking the demise of the island states and their cultures. Are the effects of sea-level rise already noticeable on reef islands? Scientists from the ZMT have now answered this question for the Takuu Atoll, a group of Pacific islands, located northeast of Papua New Guinea.

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister...

Im Focus: Energy-saving minicomputers for the ‘Internet of Things’

The ‘Internet of Things’ is growing rapidly. Mobile phones, washing machines and the milk bottle in the fridge: the idea is that minicomputers connected to these will be able to process information, receive and send data. This requires electrical power. Transistors that are capable of switching information with a single electron use far less power than field effect transistors that are commonly used in computers. However, these innovative electronic switches do not yet work at room temperature. Scientists working on the new EU research project ‘Ions4Set’ intend to change this. The program will be launched on February 1. It is coordinated by the Helmholtz-Zentrum Dresden-Rossendorf (HZDR).

“Billions of tiny computers will in future communicate with each other via the Internet or locally. Yet power consumption currently remains a great obstacle”,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

DATE 2016 Highlighting Automotive and Secure Systems

26.01.2016 | Event News

 
Latest News

A new potential biomarker for cancer imaging

05.02.2016 | Life Sciences

Graphene is strong, but is it tough?

05.02.2016 | Materials Sciences

Tiniest Particles Shrink Before Exploding When Hit With SLAC's X-ray Laser

05.02.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>