Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cholesterol-lowering medication accelerates depletion of plaque in arteries

14.12.2011
New study reveals molecular mechanism promoting the breakdown of plaque by statins

In a new study, NYU Langone Medical Center researchers have discovered how cholesterol-lowering drugs called statins promote the breakdown of plaque in the arteries. The study was published online by the journal PLoS One on December 6, 2011.

The findings support a large clinical study that recently showed patients taking high-doses of the cholesterol-lowering medications not only reduced their cholesterol levels but also reduced the amount of plaque in their arteries. However, until now researchers did not fully understand how statins could reduce atherosclerosis, the accumulation of fat and cholesterol that hardens into plaque in arteries, a major cause of mortality in Western countries. High blood cholesterol is a major culprit in atherosclerosis. As a result of narrowing arteries, blood clots can form or plaque can break off causing blockages in vessels. This can lead to a potentially fatal heart attack or stroke.

"Our new research shows statins actually promote the regression of atherosclerosis by altering the expression of a specific cell surface receptor within plaque cells," said co-author of the study, Edward Fisher, MD, PhD, Leon H. Charney Professor of Cardiovascular Medicine and director of the Marc and Ruti Bell Vascular Biology Program at NYU Langone Medical Center. "This molecular phenomenon helps dissolve plaque by expelling coronary artery disease-causing cells from the plaque lining the arteries."

The NYU Langone study reveals how statins promote the transformation of arterial plaques by activating a protein that sits on the surface of macrophages, immune cells that are prevalent in plaque. The immune system sends macrophages to clean up cholesterol deposits in arteries, but once they fill up with the bad form of cholesterol they get stuck in the arteries, triggering the body's inflammatory response. The bloated macrophages then become major components of plaque lining artery walls.

In the study, researchers show in mouse models that statins activate the cell surface protein receptor C-C chemokine receptor type 7 (CCR7), which in turn activates a cell-signaling pathway forcing macrophages out of plaque. In addition, the researchers show that macrophages only leave plaque when CCR7 is expressed. Therefore, regression of plaque is dependent on CCR7, the researchers concluded. The statins appeared to directly regulate and enhance CCR7 gene expression and induce macrophage cells to leave the plaque. CCR7 is a widely studied protein associated with the migration of immune cells and its expression is a marker of the presence of macrophages.

Statins are potent inhibitors of HMG-CoA reductase, the enzyme that plays a central role in the production of cholesterol. Statins have been shown to reduce the risk of cardiovascular disease and cardiac events like heart attack. Cholesterol is needed for all proper cellular function. High-density lipoprotein cholesterol (HDL-C), good cholesterol, helps reduce the risk of atherosclerosis by taking cholesterol away from cells. Low density lipoprotein (LDL-C), bad cholesterol, carries cholesterol to cells. However, an LDL overload in the body increases a person's risk of cardiovascular disease including atherosclerosis.

"Our experimental findings indicate that statins, in addition to lowering LDL cholesterol, have clinical benefits of accelerating plaque regression by a newly discovered mechanism," said co-author Michael Garabedian, PhD, Professor, Department of Microbiology and Urology at NYU Langone Medical Center. "It's possible that these drugs could possibly be more beneficial to a wider population of patients potentially reducing the overall lifetime burden of plaque and the prevention of atherosclerosis."

The study was a collaboration by NYU Langone Medical Center's Department of Medicine, Division of Cardiology, the Department of Microbiology, Schneider Children's Medical Center of Israel and the Centre for Clinical Pharmacology, Division of Medicine at the University College of London in the United Kingdom. This research study was supported by funding from the National Institutes of Health, Astra Zeneca and Pfizer.

About NYU Langone Medical Center

NYU Langone Medical Center, a world-class, patient-centered, integrated, academic medical center, is one on the nation's premier centers for excellence in clinical care, biomedical research and medical education. Located in the heart of Manhattan, NYU Langone is composed of three hospitals – Tisch Hospital, its flagship acute care facility; the Rusk Institute of Rehabilitation Medicine, the world's first university-affiliated facility devoted entirely to rehabilitation medicine; and the Hospital for Joint Diseases, one of only five hospitals in the nation dedicated to orthopaedics and rheumatology – plus the NYU School of Medicine, which since 1841 has trained thousands of physicians and scientists who have helped to shape the course of medical history. The medical center's tri-fold mission to serve, teach and discover is achieved 365 days a year through the seamless integration of a culture devoted to excellence in patient care, education and research. For more information, go to www.NYULMC.org.

Lauren Woods | EurekAlert!
Further information:
http://www.nyumc.org

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>