Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Choice between two evils

13.06.2012
Multiple sclerosis continues to puzzle scientists in all sorts of ways. Now researchers from the University of Würzburg have managed to make some progress in the search for the causes of this disease. They have revealed that in order to avoid greater damage the brain accepts a lesser evil.

The “disease with 1000 faces” is how multiple sclerosis (MS) is sometimes described. The reason for this name is that the clinical picture can differ dramatically from patient to patient – in terms of both the progression of the disease and the symptoms suffered.

However, there is one finding that is the same in principle for everyone: multiple sclerosis is an autoimmune disease where one particular type of brain cell, known as an oligodendrocyte, is destroyed by the immune system. Oligodendrocytes form an insulating layer around the extensions of nerve cells that is required for efficient impulse conduction.

If this conduction is disturbed as a consequence of damage to the insulating layer, the nerves cannot transfer relevant “messages” as effectively as before. This is why multiple sclerosis sufferers often feel a tingling sensation in their extremities. Patients stumble more or have difficulties seeing. In extreme cases, they become incapable of moving around on their own and are confined to a wheelchair. According to the Multiple Sclerosis Society of Germany, around 2.5 million people worldwide have MS. The latest projections indicate that some 130,000 sufferers live in Germany; around 2,500 people are diagnosed with the disease each year.

Killer T cells are suspected of being a cause

The full details of what triggers the onset of the disease are not yet known. “Based on tests done on the brains of deceased MS patients, it has long been suspected that a certain type of lymphocyte, the killer T cell, is involved in destroying oligodendrocytes,” says Professor Thomas Hünig from the Institute of Virology and Immunobiology at the University of Würzburg. Together with scientists from Cologne and Dresden, Hünig and his colleague, Dr. Shin-Young Na, have now taken a closer look at this process and have made a surprising discovery. This is reported in the latest issue of the journal Immunity. They found that the brain itself allows the T cells to attack the myelin sheath under specific conditions – because by doing so it may be able to prevent greater damage to the sufferer.

Even though the findings from the brains of deceased MS patients point to a strong involvement by killer T cells, scientists have always had a problem with this: “In animal experiments, which are unavoidable for the development of new treatment strategies, there has been no convincing demonstration of an attack on the nerve sheaths that is mediated by killer T cells,” explains Hünig. For this reason, the research group made their search a little more complicated.

They infected mice in the laboratory with a specific species of bacteria – listeria –, which shares a protein with oligodendrocytes, and observed the consequences when peripheral parts of the body were infected and when the infection was confined to the brain.

The brain decides

The outcome: “With an infection in the periphery, the killer cells search for the pathogen all over the body, including the brain,” says Hünig. However, in this case the immune system is able to identify those killer cells that mistake the myelin sheaths for something alien because they recognize the protein the sheaths share with listeria and so attack. It fights the killer cells and destroys them. It is a different story when the infection is in the brain itself: “Then the attack is allowed, which destroys the protective myelin sheath and leads to the formation of the plaques you see with multiple sclerosis,” explains the scientist.

A kind of “trade-off” seems to be responsible for the difference in progression. The brain’s “decision” to allow the attack helps combat the pathogen. It would appear that the brain is applying the motto: better that a few infected cells are destroyed and nerve cell extensions are demyelized than that the pathogen spreads and may therefore kill the sufferer. However, in the absence of an infection with menacing pathogens, the brain “recognizes” that this is a misguided attack by killer T cells and destroys them. It is possible, though, that the brain may sometimes “overestimate” the threat posed by a microbial pathogen and may sacrifice the protective myelin sheath unnecessarily.

Next steps

“These findings could form the basis for future therapies focused on combating microbial pathogens in the brain as well as reducing the local inflammation they cause,” hopes Hünig. Since many researchers are convinced that viruses can trigger certain forms of multiple sclerosis, he believes it makes sense to continue to conduct research in this direction.

Oligodendrocytes Enforce Immune Tolerance of the Uninfected Brain by Purging the Peripheral Repertoire of Autoreactive CD8+ T Cells; Shin-Young Na, Andreas Hermann, Monica Sanchez-Ruiz, Alexander Storch, Martina Deckert and Thomas Hünig; Immunity, Published online: June 7, DOI: 10.1016/j.immuni.2012.04.009

Contact
Prof. Dr. Thomas Hünig, Department of Immunology, T: +49 (0)931 201-49951, e-mail: huenig@vim.uni-wuerzburg.de

Gunnar Bartsch | idw
Further information:
http://www.uni-wuerzburg.de

Further reports about: T cells immune system immunity killer T cells multiple sclerosis nerve cell

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>