Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chili peppers continue to help unravel mechanism of pain sensation

26.02.2009
Capsaicin, the active ingredient in chili peppers, generally is viewed as an irritant that produces a burning sensation when applied to a sensitive area of the body, such as the cornea.

Paradoxically, the same compound also may reduce pain. Capsaicin creams are natural pain-relieving folk medicines, commonly found over the counter, and are effective for a variety of pain syndromes, from minor muscle or joint aches to those that are very difficult to treat, such as arthritis and neuropathic pain.

Scientists at University at Buffalo now link the analgesic effects of capsaicin to a lipid called PIP2 in the cell membranes.

Results of the research, headed by Feng Qin, Ph.D., associate professor in the Department of Physiology and Biophysics in the University at Buffalo's School of Medicine and Biomedical Sciences, appear Feb. 24 in the journal PLoS Biology.

Capsaicin works by stimulating a receptor on nerve endings in the skin, which sends a message to the brain and generates the sensation of pain. The receptor also senses heat, making chili peppers taste hot.

"The receptor acts like a gate to the neurons," said Qin. "When stimulated it opens, letting outside calcium enter the cells until the receptor shuts down, a process called desensitization. The analgesic action of capsaicin is believed to involve this desensitization process. However, how the entry of calcium leads to the loss of sensitivity of the neurons was not clear."

Previous research from the UB group and others implicated the significance of the PIP2 lipid. Calcium influx induces strong depletion of the lipid in the plasma membrane. By combining electrical and optical measurements, the authors now have been able to directly link the depletion of PIP2 to the desensitization of the receptor.

The authors also found that the receptor is still fully functional after desensitization. "What changed was the responsiveness threshold," said Qin. "In other words, the receptor had not desensitized per se, but its responsiveness range was shifted. This property, called adaptation, would allow the receptor to continuously respond to varying stimuli over a large capsaicin concentration range."

"Adaptation" is a property that is found in other sensory receptors, such as those in hearing and vision, and is identified in pain receptors as well.

The findings have implications for pain-sensation mechanisms as well as clinical applications, the authors note. With an adaptive response, the receptors are essentially autoregulated without a fixed threshold. The intensity that causes pain is dependent on the history of activity.

Plasticity of pain is known at the central level. The study now shows that it may also be present at the peripheral site, although the sensation of pain is complex and involves many types of receptors and messengers. The lipid dependence of the receptor also will provide novel strategies for development of safe analgesics like capsaicin, a natural pain reliever, but with less irritation.

Jing Yao, Ph.D., a post-doctoral research student in the UB Department of Physiology and Biophysics, is second author on the paper.

The study was supported by a grant from the National Institutes of Health.

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. The School of Medicine and Biomedical Sciences is one of five schools that constitute UB's Academic Health Center. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Lois Baker | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

12th COMPAMED Spring Convention: Innovative manufacturing processes of modern implants

28.05.2018 | Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

 
Latest News

Cognitive Power Electronics 4.0 is gaining momentum

28.05.2018 | Trade Fair News

Organic light-emitting diodes become brighter and more durable

28.05.2018 | Physics and Astronomy

12th COMPAMED Spring Convention: Innovative manufacturing processes of modern implants

28.05.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>