Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Children's National researchers make breakthrough in understanding white matter development

30.09.2011
Study findings indicate a key step in the generation of white matter and understanding developmental disabilities

Through the identification of a gene's impact on a signaling pathway, scientists at Children's National Medical Center continue to make progress in understanding the mechanics of a key brain developmental process: growth and repair of white matter, known as myelination.

The study, published online in the September 2011 online edition of The Journal of Neuroscience, identified Sox17 as the gene that helps regulate the Wnt/beta-catenin signaling pathway during the transition of oligodendrocyte progenitor cells, or immature brain cells, to a more mature, differentiated state where they generate myelin.

"This is the first time the Sox17 gene has been identified as a regulator of the Wnt/beta-catenin pathway during myelination," said Li-Jin Chew, PhD, lead author of the study. "Our findings indicate that loss of Sox17 over-stimulates the Wnt/beta-catenin pathway and keeps oligodendrocyte progenitor cells from maturing and producing myelin, potentially causing developmental disabilities in developing babies and children."

Myelin is the protective material around the axons of neurons; in mass these types of ensheathed neurons are collectively called white matter. White matter serves as the primary messaging "network" that conducts signals rapidly between gray matter areas. Without it, the brain does not function properly. Myelination, or growth of white matter, in humans begins in utero at around 5 months of gestation and continues throughout the first two decades of life. Myelination can be impaired for a number of reasons, most commonly intrauterine infection, reduced or interrupted blood flow (which carries oxygen and nutrients) to the forming infant brain, or perinatal injury. As a result, white matter doesn't develop the way that it should or is somehow damaged, resulting in mental retardation and developmental disabilities. "From here we plan to look more closely at the parts of the pathway that Sox17 regulates. We'll be able to understand the crucial molecular events that occur during oligodendrocyte development and disease," stated Vittorio Gallo, PhD, director of the Center for Neuroscience Research. "This is an incredibly exciting discovery that puts us closer to figuring out the underlying cause of white matter diseases. It also means that we may eventually understand how we could influence these pathways and possibly ease white matter damage or deficiency in our patients."

Myelination, white matter growth and repair, and the study of complex mechanisms of prenatal brain development are a key focus of the Center for Neuroscience Research at Children's National, which also houses the White Matter Diseases Program, one of the largest clinical programs in the country for treating children with disorders that cause the brain's white matter to degenerate.

About Children's National Medical Center:

Children's National Medical Center in Washington, DC, has been serving the nation's children since 1870. Home to Children's Research Institute and the Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National is consistently ranked among the top pediatric hospitals by U.S.News & World Report and the Leapfrog Group. With 283 beds, more than 1,330 nurses, 550 physicians, and seven regional outpatient centers, Children's National is the only exclusive provider of acute pediatric services in the Washington metropolitan area. Children's National has been recognized by the American Nurses Credentialing Center as a Magnet® designated hospital, the highest level of recognition for nursing excellence that a medical center can achieve. For more information, visit ChildrensNational.org, receive the latest news from the Children's National press room, or follow us on Facebook and Twitter.

Emily Hartman | EurekAlert!
Further information:
http://www.childrensnational.org

More articles from Health and Medicine:

nachricht A whole-body approach to understanding chemosensory cells
13.12.2017 | Tokyo Institute of Technology

nachricht Research reveals how diabetes in pregnancy affects baby's heart
13.12.2017 | University of California - Los Angeles Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>