Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Children's National researchers make breakthrough in understanding white matter development

30.09.2011
Study findings indicate a key step in the generation of white matter and understanding developmental disabilities

Through the identification of a gene's impact on a signaling pathway, scientists at Children's National Medical Center continue to make progress in understanding the mechanics of a key brain developmental process: growth and repair of white matter, known as myelination.

The study, published online in the September 2011 online edition of The Journal of Neuroscience, identified Sox17 as the gene that helps regulate the Wnt/beta-catenin signaling pathway during the transition of oligodendrocyte progenitor cells, or immature brain cells, to a more mature, differentiated state where they generate myelin.

"This is the first time the Sox17 gene has been identified as a regulator of the Wnt/beta-catenin pathway during myelination," said Li-Jin Chew, PhD, lead author of the study. "Our findings indicate that loss of Sox17 over-stimulates the Wnt/beta-catenin pathway and keeps oligodendrocyte progenitor cells from maturing and producing myelin, potentially causing developmental disabilities in developing babies and children."

Myelin is the protective material around the axons of neurons; in mass these types of ensheathed neurons are collectively called white matter. White matter serves as the primary messaging "network" that conducts signals rapidly between gray matter areas. Without it, the brain does not function properly. Myelination, or growth of white matter, in humans begins in utero at around 5 months of gestation and continues throughout the first two decades of life. Myelination can be impaired for a number of reasons, most commonly intrauterine infection, reduced or interrupted blood flow (which carries oxygen and nutrients) to the forming infant brain, or perinatal injury. As a result, white matter doesn't develop the way that it should or is somehow damaged, resulting in mental retardation and developmental disabilities. "From here we plan to look more closely at the parts of the pathway that Sox17 regulates. We'll be able to understand the crucial molecular events that occur during oligodendrocyte development and disease," stated Vittorio Gallo, PhD, director of the Center for Neuroscience Research. "This is an incredibly exciting discovery that puts us closer to figuring out the underlying cause of white matter diseases. It also means that we may eventually understand how we could influence these pathways and possibly ease white matter damage or deficiency in our patients."

Myelination, white matter growth and repair, and the study of complex mechanisms of prenatal brain development are a key focus of the Center for Neuroscience Research at Children's National, which also houses the White Matter Diseases Program, one of the largest clinical programs in the country for treating children with disorders that cause the brain's white matter to degenerate.

About Children's National Medical Center:

Children's National Medical Center in Washington, DC, has been serving the nation's children since 1870. Home to Children's Research Institute and the Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National is consistently ranked among the top pediatric hospitals by U.S.News & World Report and the Leapfrog Group. With 283 beds, more than 1,330 nurses, 550 physicians, and seven regional outpatient centers, Children's National is the only exclusive provider of acute pediatric services in the Washington metropolitan area. Children's National has been recognized by the American Nurses Credentialing Center as a Magnet® designated hospital, the highest level of recognition for nursing excellence that a medical center can achieve. For more information, visit ChildrensNational.org, receive the latest news from the Children's National press room, or follow us on Facebook and Twitter.

Emily Hartman | EurekAlert!
Further information:
http://www.childrensnational.org

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>