Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Childhood trauma leaves mark on DNA of some victims

03.12.2012
Gene-environment interaction causes lifelong dysregulation of stress hormones

Abused children are at high risk of anxiety and mood disorders, as traumatic experience induces lasting changes to their gene regulation. Scientists from the Max Planck Institute of Psychiatry in Munich have now documented for the first time that genetic variants of the FKBP5 gene can influence epigenetic alterations in this gene induced by early trauma.

In individuals with a genetic predisposition, trauma causes long-term changes in DNA methylation leading to a lasting dysregulation of the stress hormone system. As a result, those affected find themselves less able to cope with stressful situations throughout their lives, frequently leading to depression, post-traumatic stress disorder or anxiety disorders in adulthood. Doctors and scientists hope these discoveries will yield new treatment strategies tailored to individual patients, as well as increased public awareness of the importance of protecting children from trauma and its consequences.

Many human illnesses arise from the interaction of individual genes and environmental influences. Traumatic events, especially in childhood, constitute high risk factors for the emergence of psychiatric illnesses in later life. However, whether early stress actually leads to a psychiatric disorder depends largely on his or her genetic predisposition.

Research Group Leader Elisabeth Binder of the Max Planck Institute of Psychiatry examined the DNA of almost 2000 Afro-Americans who had been repeatedly and severely traumatised as adults or in childhood. One-third of trauma victims had become ill and was now suffering from post-traumatic stress disorder. The risk of developing post-traumatic stress disorder rose with increasing severity of abuse only in the carriers of a specific genetic variant in the FKBP5 gene. FKPB5 determines how effectively the organism can react to stress, and by this regulates the entire stress hormone system. The scientists hoped to cast light on the mechanisms of this gene-environment interaction by comparing modifications of the DNA sequence of victims who had not become ill with that of those who had.

The Munich-based Max Planck scientists were then able to demonstrate that the genetic FKBP5 variant does make a physiological difference to those affected, also in nerve cells. Extreme stress and the associated high concentrations of stress hormones bring about what is called an epigenetic change. A methyl group is broken off the DNA at this point, causing a marked increase in FKBP5 activity. This lasting epigenetic change is generated primarily through childhood traumatisation. Consequently, no disease-related demethylation of the FKBP5 gene was detected in participants who were traumatised in adulthood only.

Torsten Klengel, a scientist at the Max Planck Institute of Psychiatry, explains the findings of the study as follows: "Depending on genetic predisposition, childhood trauma can leave permanent epigenetic marks on the DNA, further de-repressing FKBP5 transcription. The consequence is a permanent dysregulation of the victim's stress hormone system, which can ultimately lead to psychiatric illness. Decisive for victims of childhood abuse, however, is that the stress-induced epigenetic changes can only occur if their DNA has a specific sequence."

This recent study improves our understanding of psychiatric illnesses which arise from the interaction of environmental and genetic factors. The results will help tailor treatment particularly for patients who were exposed to trauma in early childhood, thereby greatly increasing their risk of illness.

Original publication:

Torsten Klengel, Divya Mehta, Christoph Anacker, Monika Rex–Haffner, Jens C. Pruessner, Carmine M. Pariante, Thaddeus W.W. Pace, Kristina B. Mercer, Helen S. Mayberg, Bekh Bradley, Charles B. Nemeroff, Florian Holsboer, Christine M. Heim, Kerry J. Ressler, Theo Rein & Elisabeth B. Binder

Allele–specific FKBP5 DNA demethylation: a molecular mediator of gene–childhood trauma interactions

Nature Neuroscience 2012

Barbara Meyer | EurekAlert!
Further information:
http://www.mpipsykl.mpg.de

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>