Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical found in hot asphalt could be linked to higher cancer rates in roofers

27.07.2012
Roofers and road construction workers who use hot asphalt are exposed to high levels of polycyclic aromatic hydrocarbons (PAHs).
A University of Colorado Cancer Center study published this week in the British Medical Journal Open shows that roofers have higher PAH blood-levels after working a shift and that these high levels of PAHs are linked with increased rates of DNA damage, and potentially with higher cancer risk.

“We’ve known for some time that roofers and road workers have higher cancer rates than the general population, but we also know roofers have a higher rates of smoking, alcohol use and higher UV exposure than the general population. It’s been difficult to pinpoint the cause of higher cancer rates – is it due to higher PAHs or is it due to lifestyle and other risk factors?” says Berrin Serdar, MD, PhD, investigator at the CU Cancer Center and assistant professor of environmental and occupational health at the Colorado School of Public Health.

Her study, completed with colleagues at the University of Miami, studied 19 roofers from four work sites in Miami-Dade County. Participants’ urine samples, provided before and after a 6-hour shift, showed that after acute exposure to hot asphalt, PAH biomarkers were elevated. Overall, biomarkers of PAH exposure and oxidative DNA damage (8-OHdG) were highest among workers who didn’t use protective gloves and workers who also reported work related skin burns, pointing to the role of PAH absorption through skin.

“PAHs are a complex mixture of chemicals some of which are known human carcinogens. They are produced by incomplete combustion of organic materials and exist in tobacco smoke, engine exhaust, or can come from environmental sources like forest fires, but the highest exposure is among occupational groups, for example coke oven workers or workers who use hot asphalt,” Serdar says.

“We can’t say with certainty that exposure to hot asphalt causes roofers’ increased cancer rate,” Serdar says, “but that possibility is becoming increasingly likely. Hot asphalt leads to PAH exposure, leads to higher PAH biomarkers, leads to increased DNA damage – we hope to further explore the final link between DNA damage due to PAH exposure and higher cancer rates in this population.”

Serdar and colleagues at the CU Cancer Center have initiated a wider study of roofers in the Denver metropolitan area. This study will simultaneously investigate air, blood, and urine levels of PAHs and their link to DNA damage in samples collected over a workweek.

Garth Sundem | EurekAlert!
Further information:
http://www.ucdenver.edu

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>