Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Changing cancer's environment to halt its spread

22.05.2013
Study clarifies roles of anti-angiogenic proteins in discouraging metastasis and reveals potential anti-metastasis drug

By studying the roles two proteins, thrombospondin-1 and prosaposin, play in discouraging cancer metastasis, a trans-Atlantic research team has identified a five-amino acid fragment of prosaposin that significantly reduces metastatic spread in mouse models of prostate, breast and lung cancer. The findings suggest that a prosaposin-based drug could potentially block metastasis in a variety of cancers.

The study team, led by Randolph Watnick, PhD, at Boston Children's Hospital, Vivek Mittal, PhD, at Weill Cornell Medical College and Lars Akslen, MD, PhD, at the University of Bergen, released their findings in the May issue of the journal Cancer Discovery.

The main cause of cancer mortality is not the primary tumor itself, but rather its spread—metastasis—to other locations in the body and subsequent organ failure. Previous studies by Watnick, a member of Boston Children's Vascular Biology Program, and others have shown that tumors capable of metastasis release proteins that help prepare new homes in distant organs for their metastatic progeny.

Watnick's lab has also previously shown that tumors that cannot metastasize release prosaposin. This protein activates expression of a second protein called thrombospondin-1, a potent anti-angiogenic factor, in tissues where metastatic tumor cells could potentially take root. Thrombospondin-1 makes these otherwise-permissive tissues resistant to metastasis.

"In the past, we've struggled to determine the source of thrombospondin-1 production," Watnick says. "We knew it was coming from the tumor microenvironment, normal cells adjacent to the sites of potential metastasis, but we could not tell if those cells were native to the microenvironment or had been recruited from the bone marrow."

Using mouse models of breast, prostate and lung cancer, Watnick and his colleagues confirmed through bone marrow transplant and gene knockout experiments that both metastatic and non-metastatic tumors induce cells from the bone marrow—specifically, monocytes expressing the Gr1 surface marker—to migrate to the lungs. However, non-metastatic tumors then trigger these monocytes to produce thrombospondin-1 by releasing prosaposin.

"Others have shown that tumors recruit monocytes to future metastatic sites, which help to set up a permissive environment for tumor cells to metastasize, " Watnick notes. "Our results suggest that non-metastatic tumors do the same thing, but instead of creating a permissive environment, the monocytes create a refractory environment by producing thrombospondin-1."

Watnick thinks this finding creates a window of therapeutic opportunity. "If we can trigger monocytes recruited by pro-metastatic tumors to produce thrombospondin-1 like those recruited by non-metastatic tumors, we will be able to hijack the mechanism by which tumors create metastasis-permissive sites to close the door on those sites."

Thrombospondin-1 itself, however, is too large to serve as a drug, and studies using shortened versions of the protein have not been promising. Watnick and his collaborators instead are focusing on prosaposin. To find the smallest part of prosaposin capable of activating thrombospondin-1, the team took an 80-amino acid region of prosaposin and whittled it down bit by bit until they isolated a five amino-acid peptide that could trigger thrombospondin-1 production as strongly as the full-length protein.

When administered in mouse models of metastatic cancer, this peptide significantly reduced metastasis compared to scrambled versions of the peptide (with the same amino acids but in different sequence), but only in mice with monocytes capable of producing thrombospondin-1.

Strikingly, Watnick and his collaborators also found that prostate cancer patients whose tumors expressed higher levels of prosaposin had significantly greater overall survival than patients whose tumors expressed low levels of prosaposin. Thus, with additional work, Watnick believes the prosaposin peptide could be the foundation for a tumor- and location-agnostic method of treating or preventing metastasis in patients with advanced cancers.

"The size of this peptide makes it ideal for drug development," Watnick says. "It's about as large as tyrosine kinase inhibitors such as Gleevec or Iressa, and could potentially be formulated in multiple ways for different types of cancer. I could also foresee using a therapeutic agent like this peptide as an adjuvant therapy, for example just as we now use chemotherapy or hormonal therapy for breast cancer."

Boston Children's Technology and Innovation Development Office (TIDO) has filed patent applications on these peptides, peptide derivatives and their uses. A start-up company is in the works.

The study was supported by the National Cancer Institute (grants R01CA135417 and U54CA143876), the Norwegian Cancer Society, the Norwegian Research Council, the Robert I. Goldman Foundation, the Elsa U. Pardee Foundation, the Boston Children's Hospital Technology Development Fund, the Government of Navarra, Spain, and the Navarra Chamber of Commerce.

Boston Children's Hospital is home to the world's largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults since 1869. More than 1,100 scientists, including nine members of the National Academy of Sciences, 11 members of the Institute of Medicine and 11 members of the Howard Hughes Medical Institute comprise Boston Children's research community. Founded as a 20-bed hospital for children, Boston Children's today is a 395-bed comprehensive center for pediatric and adolescent health care grounded in the values of excellence in patient care and sensitivity to the complex needs and diversity of children and families. Boston Children's also is a teaching affiliate of Harvard Medical School. For more information about research and clinical innovation at Boston Children's, visit: http://vectorblog.org/.

Keri Stedman | EurekAlert!
Further information:
http://vectorblog.org
http://www.childrenshospital.org

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>