Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In challenge to preferred target of deep brain stimulation for Parkinson’s, a call for more research

21.06.2012
When a neurologist and neurosurgeon believe deep brain stimulation may help a patient suffering from Parkinson’s disease they target either of two structures – the internal globus pallidus or the subthalamic nucleus – in an area of the brain that controls voluntary muscle movements.

While stimulating the subthalamic nucleus (STN) generally has been the therapy of choice, new research published in the June 20, 2012, issue of Neurology®, the medical journal of the American Academy of Neurology, challenges that preferred status, finding that stimulating the internal globus pallidus (GPi) may provide some long-term advantages.

The subthalamic nucleus has been regarded as the preferred target since 2002, when the Food and Drug Administration approved the therapy for Parkinson’s disease. Many physicians made this therapeutic choice because stimulation of the subthalamic nucleus often enabled patients to reduce their drugs, such as levodopa; the choice of target was left to doctors because no major clinical trial had shown that one target provides better results than the other.

The largest randomized trial, published in 2010, found “motor” outcomes – movement control – fared equally, regardless of target. That study and others also showed that while stimulation can improve motor skills, it does not stop cognitive, mood or behavioral declines.

The new study, based on outcomes in 159 patients from the 2010 trial, challenges the preferred targeting, finding that stimulating the internal globus pallidus may provide long-term advantages in both motor skills and cognitive function.

In his editorial, Tagliati says these and other findings warrant more research to answer questions such as: “Is it important or even desirable to reduce medications over the long term? Do medication and stimulation have a complementary or alternative role? Is GPi stimulation more compatible with long-term medical therapy? Is chronic STN stimulation interfering with dopaminergic stimulation?”

“If the art of making medical decisions reflects a continuous struggle between evidence- and preference-based practices, this study will inject more reliable evidence in delicate long-term decisions, based until now almost exclusively on the preference and personal experience of the DBS provider,” he concludes.

Citation: Neurology: “Turning Tables: Should GPi become the preferred DBS target for Parkinson’s Disease?” (editorial), published online at 4 p.m. Eastern time June 20, 2012, in print July 3, 2012.

Media Contact: Sandy Van
Telephone: 808.526.1708 or 800.880.2397
Email: sandy@prpacific.com

Sandy Van | Cedars-Sinai News
Further information:
http://www.cedars-sinai.edu

Further reports about: DBS Neurology Parkinson STN medical decision subthalamic nucleus

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>