Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cerebrospinal fluid shows Alzheimer's disease deterioration much earlier

18.06.2009
It is possible to determine which patients run a high risk of developing Alzheimer's disease and the dementia associated with it, even in patients with minimal memory impairment. This has been shown by recent research at the Sahlgrenska Academy, University of Gothenburg, Sweden.

"The earlier we can catch Alzheimer's disease, the more we can do for the patient. The disease is one that progresses slowly, and the pharmaceuticals that are currently available are only able to alleviate the symptoms", says Kaj Blennow, professor at the Sahlgrenska Academy, and a world?leading researcher in the field.

Several biomarkers have been identified in recent years. Biomarkers are proteins that can be detected in the cerebrospinal fluid and used to diagnose Alzheimer's disease. It is now clear that the typical pattern of biomarkers known as the "CSF AD profile" can be seen in the cerebrospinal fluid of patients even with very mild memory deficiencies, before these can be detected by other tests.

"The patients who had the typical changes in biomarker profile of the cerebrospinal fluid had a risk of deterioration that was 27 times higher than the control group. We could also see that all patients with mild cognitive impairment who deteriorated and developed Alzheimer's disease had these changes in the biomarker profile of their cerebrospinal fluid", says Kaj Blennow.

The scientists were also able to show a relationship between the profile of biomarkers and other typical signs of the disease, such as the presence of the gene APOE e4 and atrophy of the hippocampus, which is the part of the brain cortex that controls memory.

"Our discovery that an analysis of biomarkers in the cerebrospinal fluid can reveal Alzheimer's disease at a very early stage will have major significance if the new type of pharmaceutical that can directly slow the progression of the disease proves to have a clinical effect. It is important in this case to start treatment before the changes in the brain have become too severe", says Kaj Blennow.

The research is part of a European research project known as DESCRIPA. Samples from 168 patients from seven countries are included in the study.

ALZHEIMER'S DISEASE
Alzheimer's disease is one of the most widespread diseases in Sweden, with more than 100,000 people being affected. The disease is caused by harmful changes to the nerve cells in the brain, and it principally affects memory. The disease often leads to early death. Alzheimer's disease not only causes untold suffering for patients and their families, it also gives rise to enormous costs for society.
For more information, contact:
Professor Kaj Blennow, telephone: +46 (0)31 343 1791, mobile: +46 (0)761 073835, Kaj.Blennow@neuro.gu.se
The Lancet Neurology, Volume 8, Issue 7, Pages 619 - 627
Prevalence and prognostic value of CSF markers of Alzheimer's disease pathology in patients with subjective cognitive impairment and mild cognitive impairment in the DESCRIPA study: a prospective, case-control study.

Authors: Piter Jelle Visser, Frans Verhey, Dirk L Knol, Philip Scheltens, Lars-Olof Wahlund, Yvonne Freund-Levi, Magda Tsolaki, Lennart Minthon, Åsa K Wallin, Harald Hampel, Katharina Bürger, Tuula Pirttila, Hilkka Soininen, Marcel Olde Rikkert, Marcel Verbeek, Luiza Spiru, Kaj Blennow.

Press information: Elin Lindström Claessen
elin.lindstrom@sahlgrenska.gu.se
+46 (0)31 7863869

Helena Aaberg | idw
Further information:
http://www,sahlgrenska.gu.se

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>