Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cementless Cup Device Developed for Total Hip Replacements Shows Durability after More than Twenty Years

04.02.2009
Durability shown even with patients who had a previously failed hip replacement

When a first hip replacement fails, patients may be concerned that their options for a durable hip replacement are limited and that the prognosis is poor. However, a research study to be published in the February issue of the Journal of Bone and Joint Surgery suggests that this may not be the case.

Researchers from Rush University Medical Center examined their results using one of the first cementless metal cup designs and found that fixation of the implant to bone is extremely durable even twenty years after repeat or “revision” hip replacement. The implant utilized, the Harris-Galante-1 acetabular metal shell, which is designed to allow a patient’s bone to grow into the implant, remained fixed in place in 95 percent of hip revision cases at a minimum follow-up of 20 years.

The implant and its bone in-growth surface were originally developed in conjunction with Dr. Jorge Galante, an orthopedic surgeon at Rush University Medical Center and one of the present study’s investigators. The cup’s porous surface allows bone and tissue to grow into the device to keep the hip implant in place. Earlier generation implants relied on the use of bone cement to secure the implant to the patient’s pelvis and were associated with a higher rate of failure, particularly when used in patients who had previously had a hip implant that had failed.

“The study’s results indicate that even the first generation of this device has excellent clinical results and durability,” said Dr. Craig Della Valle, orthopedic surgeon at Rush and study investigator. “Even after 20 years, there is low rate of failure in terms of fixation.”

Researchers previously reported the results of the use of the Harris-Galante-1 cementless acetabular shell for total hip revision procedures in 138 hips at a minimum of three, seven, and fifteen years postoperatively. The current report presents the long-term outcomes of this group at a follow-up of 20 years.

Of the original cohort of 138 hips, researchers were able to follow 73 patients who were still living (77 hips) for 20 years or more. Of the 77 hips, 37 had both clinical and radiographic evaluation, 20 had a clinical evaluation via telephone questionnaire and 21 underwent a repeat revision of the acetabular metal shell.

Twenty of the 21 cementless cups were found to be well fixed at the time of repeat revision and only one had become loose. During the entire study period, four cups were identified radiographically as being loose. For the entire cohort of 138 hips, the 20-year survivorship of the acetabular component was 95 percent.

While the long-term fixation of the device performed very well, the study did find an increased rate of repeat surgery for wear-related complications compared to the 15-year report. Ten patients, or 18 percent, had a complication related to wear of the bearing surface as opposed to 3 percent at 15 years.

“Although we have seen more complications related to wear as we have continued to follow these patients, our studies have taught us valuable lessons regarding failure mechanisms and how to avoid them,” said Della Valle.

Despite the increasing prevalence of wear-related problems, the main modes of failure were infection and recurrent dislocations. The study authors recommend the use of larger diameter femoral heads and more wear-resistant bearings to decrease the risks of these complications.

“We can continue to make vast improvements in the quality of bearing and stability in the next generation of devices used in total hip replacements with the information we have gathered from this study,” said Galante. “More and more patients are living longer and we must continue to further develop sustainable devices that will give patients a better quality of life.”

Rush University Medical Center’s orthopedics program ranks tenth in the nation, according to U.S. News & World Report. Physicians from Rush serve as the team physicians for the Chicago Bulls and the Chicago White Sox. For more information on orthopedics at Rush, visit http://www.rush.edu/rumc/page-R11726.html or call (888) 352-RUSH.

Rush University Medical Center is an academic medical center that encompasses the more than 600 staffed-bed hospital (including Rush Children’s Hospital), the Johnston R. Bowman Health Center and Rush University. Rush University, with more than 1,730 students, is home to one of the first medical schools in the Midwest, and one of the nation’s top-ranked nursing colleges. Rush University also offers graduate programs in allied health and the basic sciences. Rush is noted for bringing together clinical care and research to address major health problems, including arthritis and orthopedic disorders, cancer, heart disease, mental illness, neurological disorders and diseases associated with aging.

Deborah Song | EurekAlert!
Further information:
http://www.rush.edu

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>