Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New cell type developed for possible treatment of Alzheimer’s and other brain diseases

08.11.2012
UCI discovery accelerates efforts at Sue & Bill Gross Stem Cell Research Center
UC Irvine researchers have created a new stem cell-derived cell type with unique promise for treating neurodegenerative diseases such as Alzheimer’s.

Dr. Edwin Monuki of UCI’s Sue & Bill Gross Stem Cell Research Center, developmental & cell biology graduate student Momoko Watanabe and colleagues developed these cells — called choroid plexus epithelial cells — from existing mouse and human embryonic stem cell lines.

CPECs are critical for proper functioning of the choroid plexus, the tissue in the brain that produces cerebrospinal fluid. Among their various roles, CPECs make CSF and remove metabolic waste and foreign substances from the fluid and brain.

In neurodegenerative diseases, the choroid plexus and CPECs age prematurely, resulting in reduced CSF formation and decreased ability to flush out such debris as the plaque-forming proteins that are a hallmark of Alzheimer’s. Transplant studies have provided proof of concept for CPEC-based therapies. However, such therapies have been hindered by the inability to expand or generate CPECs in culture.

“Our method is promising, because for the first time we can use stem cells to create large amounts of these epithelial cells, which could be utilized in different ways to treat neurodegenerative diseases,” said Monuki, an associate professor of pathology & laboratory medicine and developmental & cell biology at UCI.

The study appears in today’s issue of The Journal of Neuroscience.

To create the new cells, Monuki and his colleagues coaxed embryonic stem cells to differentiate into immature neural stem cells. They then developed the immature cells into CPECs capable of being delivered to a patient’s choroid plexus.

These cells could be part of neurodegenerative disease treatments in at least three ways, Monuki said. First, they’re able to increase the production of CSF to help flush out plaque-causing proteins from brain tissue and limit disease progression. Second, CPEC “superpumps” could be designed to transport high levels of therapeutic compounds to the CSF, brain and spinal cord. Third, these cells can be used to screen and optimize drugs that improve choroid plexus function.

Monuki said the next steps are to develop an effective drug screening system and to conduct proof-of-concept studies to see how these CPECs affect the brain in mouse models of Huntington’s, Alzheimer’s and pediatric diseases.

Young-Jin Kang, Sanket Meghpara, Kimbley Lau, Chi-Yeh Chung and Jaymin Kathiriya of UCI and Anna-Katerina Hadjantonakis of the Sloan-Kettering Institute in New York contributed to the study, which received support from the National Institutes of Health (grant NS064587), the California Institute for Regenerative Medicine, UCI’s Institute for Clinical & Translational Science and UCI’s Alzheimer’s Disease Research Center.

About the University of California, Irvine: Founded in 1965, UCI is a top-ranked university dedicated to research, scholarship and community service. Led by Chancellor Michael Drake since 2005, UCI is among the most dynamic campuses in the University of California system, with nearly 28,000 undergraduate and graduate students, 1,100 faculty and 9,000 staff. Orange County’s second-largest employer, UCI contributes an annual economic impact of $4 billion. For more UCI news, visit www.today.uci.edu.

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. Use of this line is available for a fee to radio news programs/stations that wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Media Contact
Tom Vasich
University Communications
949-824-6455
tmvasich@uci.edu

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu

More articles from Health and Medicine:

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>