Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell signaling pathway linked to obesity, Type 2 diabetes

08.08.2014

A Purdue University study shows that Notch signaling, a key biological pathway tied to development and cell communication, also plays an important role in the onset of obesity and Type 2 diabetes, a discovery that offers new targets for treatment.

A research team led by Shihuan Kuang, associate professor of animal sciences, found that blocking Notch signaling in the fat tissue of mice caused white fat cells to transform into a "leaner" type of fat known as beige fat. The finding suggests that suppressing Notch signaling in fat cells could reduce the risk of obesity and related health problems, Kuang said.


Shihuan Kuang

"This finding opens up a whole new avenue to understanding how fat is controlled at the molecular level," he said. "Now that we know Notch signaling and obesity are linked in this way, we can work on developing new therapeutics."

The human body houses three kinds of fat: white, brown and beige. White fat tissue stores fatty acids and is the main culprit in weight gain. Brown fat, which helps keep hibernating animals and infants warm, burns fatty acids to produce heat. Humans lose most of their brown fat as they mature, but they retain a similar kind of fat - beige fat, which also generates heat by breaking down fatty acids.

Buried in white fat tissue, beige fat cells are unique in that they can become white fat cells depending on the body's metabolic needs. White fat cells can also transform into beige fat cells in a process known as browning, which raises the body's metabolism and cuts down on obesity.

Kuang and his team found that the Notch signaling pathway inhibits browning of white fat by regulating expression of genes that are related to beige fat tissue.

"The Notch pathway functions like a commander, telling the cell to make white fat," he said.

Suppressing key genes in the Notch pathway in the fat tissue of mice caused them to burn more energy than wild-type mice, reducing their fat mass and raising their metabolism. The transgenic mice stayed leaner than their wild-type littermates even though their daily energy intake was similar, Kuang said. They also had a higher sensitivity to insulin, a lower blood glucose level and were more resistant to weight gain when fed a high-fat diet.

 Pengpeng Bi, a doctoral candidate in animal sciences and first author of the study, said that the transgenic mice's body fat appeared browner upon dissection than the fat in wild-type mice, suggesting that blocking the Notch pathway had increased the number of their beige fat cells.

"Otherwise they looked normal," he said. "We did not notice anything exceptional about them until we looked at the fat."

Kuang and his team found that giving obese mice dibenzazepine, a drug that suppresses the Notch signaling pathway, reduced their obesity and improved their glucose balance.

Because the Notch signaling pathway is very similar in mice and humans, Kuang sees the results as having important implications for treating obesity and Type 2 diabetes in humans.

Type 2 diabetes, formerly known as "adult-onset diabetes," is a chronic ailment that particularly affects people who are overweight, lead sedentary lifestyles or have poor nutrition.

"This gives us new targets in the fight against obesity," Kuang said. "Inhibiting genes in the Notch pathway can convert white fat into beige and could reverse some of the effects of diabetes by renewing the body's sensitivity to insulin."

The study was published in Nature Medicine and is available at http://www.nature.com/nm/journal/vaop/ncurrent/full/nm.3615.html.

The research was funded in part by the National Institutes of Health. 

Writer: Natalie van Hoose, 765-496-2050, nvanhoos@purdue.edu

Sources: Shihuan Kuang, 765-494-8283, skuang@purdue.edu

Pengpeng Bi, 765-494-8280, pbi@purdue.edu 

ABSTRACT

Inhibition of Notch signaling promotes browning of white adipose tissue and ameliorates obesity

Pengpeng Bi 1; Tizhong Shan 1; Weiyi Liu 1; Feng Yue 1; Xin Yang 1; Xin-Rong Liang 1; Jinghua Wang 1; Jie Li 2; Nadia Carlesso 4; Xiaoqi Liu 2, 3; Shihuan Kunag 1, 3

1 Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA

2 Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA

3 Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA

4 Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA

E-mail: skuang@purdue.edu 

Beige adipocytes in white adipose tissue (WAT) are similar to classical brown adipocytes in that they can burn lipids to produce heat. Thus, an increase in beige adipocyte content in WAT browning would raise energy expenditure and reduce adiposity. Here we report that adipose-specific inactivation of Notch1 or its signaling mediator Rbpj in mice results in browning of WAT and elevated expression of uncoupling protein 1 (Ucp1), a key regulator of thermogenesis. Consequently, as compared to wild-type mice, Notch mutants exhibit elevated energy expenditure, better glucose tolerance and improved insulin sensitivity and are more resistant to high fat diet-induced obesity. By contrast, adipose-specific activation of Notch1 leads to the opposite phenotypes. At the molecular level, constitutive activation of Notch signaling inhibits, whereas Notch inhibition induces, Ppargc1a and Prdm16 transcription in white adipocytes. Notably, pharmacological inhibition of Notch signaling in obese mice ameliorates obesity, reduces blood glucose and increases Ucp1 expression in white fat. Therefore, Notch signaling may be therapeutically targeted to treat obesity and type 2 diabetes. 

Ag Communications: (765) 494-2722;
Keith Robinson, robins89@purdue.edu
Agriculture News Page

Natalie van Hoose | Eurek Alert!
Further information:
http://www.purdue.edu/newsroom/releases/2014/Q3/cell-signaling-pathway-linked-to-obesity,-type-2-diabetes-.html

Further reports about: Cell Lafayette Medicine acids adipocytes genes obesity pathway reduce sensitivity wild-type

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

 
Latest News

New switch decides between genome repair and death of cells

27.09.2016 | Life Sciences

Nanotechnology for energy materials: Electrodes like leaf veins

27.09.2016 | Physics and Astronomy

‘Missing link’ found in the development of bioelectronic medicines

27.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>