Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell signaling pathway linked to obesity, Type 2 diabetes

08.08.2014

A Purdue University study shows that Notch signaling, a key biological pathway tied to development and cell communication, also plays an important role in the onset of obesity and Type 2 diabetes, a discovery that offers new targets for treatment.

A research team led by Shihuan Kuang, associate professor of animal sciences, found that blocking Notch signaling in the fat tissue of mice caused white fat cells to transform into a "leaner" type of fat known as beige fat. The finding suggests that suppressing Notch signaling in fat cells could reduce the risk of obesity and related health problems, Kuang said.


Shihuan Kuang

"This finding opens up a whole new avenue to understanding how fat is controlled at the molecular level," he said. "Now that we know Notch signaling and obesity are linked in this way, we can work on developing new therapeutics."

The human body houses three kinds of fat: white, brown and beige. White fat tissue stores fatty acids and is the main culprit in weight gain. Brown fat, which helps keep hibernating animals and infants warm, burns fatty acids to produce heat. Humans lose most of their brown fat as they mature, but they retain a similar kind of fat - beige fat, which also generates heat by breaking down fatty acids.

Buried in white fat tissue, beige fat cells are unique in that they can become white fat cells depending on the body's metabolic needs. White fat cells can also transform into beige fat cells in a process known as browning, which raises the body's metabolism and cuts down on obesity.

Kuang and his team found that the Notch signaling pathway inhibits browning of white fat by regulating expression of genes that are related to beige fat tissue.

"The Notch pathway functions like a commander, telling the cell to make white fat," he said.

Suppressing key genes in the Notch pathway in the fat tissue of mice caused them to burn more energy than wild-type mice, reducing their fat mass and raising their metabolism. The transgenic mice stayed leaner than their wild-type littermates even though their daily energy intake was similar, Kuang said. They also had a higher sensitivity to insulin, a lower blood glucose level and were more resistant to weight gain when fed a high-fat diet.

 Pengpeng Bi, a doctoral candidate in animal sciences and first author of the study, said that the transgenic mice's body fat appeared browner upon dissection than the fat in wild-type mice, suggesting that blocking the Notch pathway had increased the number of their beige fat cells.

"Otherwise they looked normal," he said. "We did not notice anything exceptional about them until we looked at the fat."

Kuang and his team found that giving obese mice dibenzazepine, a drug that suppresses the Notch signaling pathway, reduced their obesity and improved their glucose balance.

Because the Notch signaling pathway is very similar in mice and humans, Kuang sees the results as having important implications for treating obesity and Type 2 diabetes in humans.

Type 2 diabetes, formerly known as "adult-onset diabetes," is a chronic ailment that particularly affects people who are overweight, lead sedentary lifestyles or have poor nutrition.

"This gives us new targets in the fight against obesity," Kuang said. "Inhibiting genes in the Notch pathway can convert white fat into beige and could reverse some of the effects of diabetes by renewing the body's sensitivity to insulin."

The study was published in Nature Medicine and is available at http://www.nature.com/nm/journal/vaop/ncurrent/full/nm.3615.html.

The research was funded in part by the National Institutes of Health. 

Writer: Natalie van Hoose, 765-496-2050, nvanhoos@purdue.edu

Sources: Shihuan Kuang, 765-494-8283, skuang@purdue.edu

Pengpeng Bi, 765-494-8280, pbi@purdue.edu 

ABSTRACT

Inhibition of Notch signaling promotes browning of white adipose tissue and ameliorates obesity

Pengpeng Bi 1; Tizhong Shan 1; Weiyi Liu 1; Feng Yue 1; Xin Yang 1; Xin-Rong Liang 1; Jinghua Wang 1; Jie Li 2; Nadia Carlesso 4; Xiaoqi Liu 2, 3; Shihuan Kunag 1, 3

1 Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA

2 Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA

3 Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA

4 Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA

E-mail: skuang@purdue.edu 

Beige adipocytes in white adipose tissue (WAT) are similar to classical brown adipocytes in that they can burn lipids to produce heat. Thus, an increase in beige adipocyte content in WAT browning would raise energy expenditure and reduce adiposity. Here we report that adipose-specific inactivation of Notch1 or its signaling mediator Rbpj in mice results in browning of WAT and elevated expression of uncoupling protein 1 (Ucp1), a key regulator of thermogenesis. Consequently, as compared to wild-type mice, Notch mutants exhibit elevated energy expenditure, better glucose tolerance and improved insulin sensitivity and are more resistant to high fat diet-induced obesity. By contrast, adipose-specific activation of Notch1 leads to the opposite phenotypes. At the molecular level, constitutive activation of Notch signaling inhibits, whereas Notch inhibition induces, Ppargc1a and Prdm16 transcription in white adipocytes. Notably, pharmacological inhibition of Notch signaling in obese mice ameliorates obesity, reduces blood glucose and increases Ucp1 expression in white fat. Therefore, Notch signaling may be therapeutically targeted to treat obesity and type 2 diabetes. 

Ag Communications: (765) 494-2722;
Keith Robinson, robins89@purdue.edu
Agriculture News Page

Natalie van Hoose | Eurek Alert!
Further information:
http://www.purdue.edu/newsroom/releases/2014/Q3/cell-signaling-pathway-linked-to-obesity,-type-2-diabetes-.html

Further reports about: Cell Lafayette Medicine acids adipocytes genes obesity pathway reduce sensitivity wild-type

More articles from Health and Medicine:

nachricht Nanotubes are beacons in cancer-imaging technique
23.05.2016 | Rice University

nachricht More light on cancer
20.05.2016 | Lomonosov Moscow State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

3-D model reveals how invisible waves move materials within aquatic ecosystems

30.05.2016 | Materials Sciences

Spin glass physics with trapped ions

30.05.2016 | Materials Sciences

Optatec 2016: Robust glass optical elements for LED lighting

30.05.2016 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>