Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell protein suppresses pain 8 times more effectively than morphine

10.10.2008
More people suffer from pain than from heart disease, diabetes and cancer combined, but many of the drugs used to relieve suffering are not completely effective or have harmful side effects.

Now researchers at the University of North Carolina at Chapel Hill School of Medicine and the University of Helsinki have discovered a new therapeutic target for pain control, one that appears to be eight times more effective at suppressing pain than morphine.

The scientists pinpointed the identity and role of a particular protein that acts in pain-sensing neurons, or nerve cells, to convert the chemical messengers that cause pain into ones that suppress it.

"This protein has the potential to be a groundbreaking treatment for pain and has previously not been studied in pain-sensing neurons," said lead study author Mark J. Zylka, Ph.D., assistant professor of cell and molecular physiology at UNC. The results of the study will be published online in the journal Neuron, on Wednesday (Oct. 8) and in the print edition the following day.

The biological basis of pain is complex. To study the transmission of painful signals throughout the body, many researchers use "marker" proteins that label pain-sensing neurons. One such marker, FRAP (fluoride-resistant acid phosphatase), has been employed for this purpose for nearly 50 years, but the gene that codes for its production was never identified.

That is, until researchers at UNC found that FRAP is identical to PAP (prostatic acid phosphatase), a protein routinely used to diagnose prostate cancer whose levels increase in the blood of patients with metastatic prostate cancer.

Previous research hinted that FRAP and PAP may have a shared identity. To determine whether or not this was the case, Zylka teamed up with Dr. Pirkko Vihko, a professor from the University of Helsinki who had genetically engineered mice that were missing the gene for PAP. When Zylka and his colleagues studied tissues from these mutant mice, they were happy to see that FRAP activity was missing. This revealed that the two proteins were in fact identical.

Further, the mutant mice proved more sensitive than normal mice to inflammatory pain and neuropathic pain, two common forms of chronic pain in humans. These increased sensitivities diminished when researchers injected excess amounts of PAP into the spinal cords of the mutant mice.

"We were really blown away that a simple injection could have such a potent effect on pain," Zylka said. "Not only that, but it appeared to work much better than the commonly used drug morphine."

The new protein suppressed pain as effectively as morphine but for substantially longer. One dose of PAP lasted for up to three days, much longer than the five hours gained with a single dose of morphine.

The next question for the researchers was how PAP suppressed pain. It is already known that when pain-sensing neurons are stimulated, they release chemicals known as nucleotides, specifically adenosine triphosphate (ATP). This in turn sets off the events that invoke a painful sensation. But if ATP degrades to adenosine, that inhibits the neurons that transmit pain signals, thus relieving pain. Through a series of experiments, the UNC researchers showed that PAP removes the phosphate group, generating adenosine. Their study is the first to identify and characterize the role of such a protein in pain-sensing neurons.

Zylka and his colleagues are now searching for additional proteins that degrade nucleotides in these neurons. They are also working to develop small molecules that interact with PAP to enhance or mimic its activity.

"It is entirely possible that PAP itself could be used as a treatment for pain, through an injection just like morphine," Zylka said. "But we would like to modify it to be taken in pill form. By taking this field in a new direction, we are encouraged and hopeful that we will be able to devise new treatments for pain."

Les Lang | EurekAlert!
Further information:
http://www.unc.edu

More articles from Health and Medicine:

nachricht The end of pneumonia? New vaccine offers hope
23.10.2017 | University at Buffalo

nachricht Scientists track ovarian cancers to site of origin: Fallopian tubes
23.10.2017 | Johns Hopkins Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>