Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell protein suppresses pain 8 times more effectively than morphine

10.10.2008
More people suffer from pain than from heart disease, diabetes and cancer combined, but many of the drugs used to relieve suffering are not completely effective or have harmful side effects.

Now researchers at the University of North Carolina at Chapel Hill School of Medicine and the University of Helsinki have discovered a new therapeutic target for pain control, one that appears to be eight times more effective at suppressing pain than morphine.

The scientists pinpointed the identity and role of a particular protein that acts in pain-sensing neurons, or nerve cells, to convert the chemical messengers that cause pain into ones that suppress it.

"This protein has the potential to be a groundbreaking treatment for pain and has previously not been studied in pain-sensing neurons," said lead study author Mark J. Zylka, Ph.D., assistant professor of cell and molecular physiology at UNC. The results of the study will be published online in the journal Neuron, on Wednesday (Oct. 8) and in the print edition the following day.

The biological basis of pain is complex. To study the transmission of painful signals throughout the body, many researchers use "marker" proteins that label pain-sensing neurons. One such marker, FRAP (fluoride-resistant acid phosphatase), has been employed for this purpose for nearly 50 years, but the gene that codes for its production was never identified.

That is, until researchers at UNC found that FRAP is identical to PAP (prostatic acid phosphatase), a protein routinely used to diagnose prostate cancer whose levels increase in the blood of patients with metastatic prostate cancer.

Previous research hinted that FRAP and PAP may have a shared identity. To determine whether or not this was the case, Zylka teamed up with Dr. Pirkko Vihko, a professor from the University of Helsinki who had genetically engineered mice that were missing the gene for PAP. When Zylka and his colleagues studied tissues from these mutant mice, they were happy to see that FRAP activity was missing. This revealed that the two proteins were in fact identical.

Further, the mutant mice proved more sensitive than normal mice to inflammatory pain and neuropathic pain, two common forms of chronic pain in humans. These increased sensitivities diminished when researchers injected excess amounts of PAP into the spinal cords of the mutant mice.

"We were really blown away that a simple injection could have such a potent effect on pain," Zylka said. "Not only that, but it appeared to work much better than the commonly used drug morphine."

The new protein suppressed pain as effectively as morphine but for substantially longer. One dose of PAP lasted for up to three days, much longer than the five hours gained with a single dose of morphine.

The next question for the researchers was how PAP suppressed pain. It is already known that when pain-sensing neurons are stimulated, they release chemicals known as nucleotides, specifically adenosine triphosphate (ATP). This in turn sets off the events that invoke a painful sensation. But if ATP degrades to adenosine, that inhibits the neurons that transmit pain signals, thus relieving pain. Through a series of experiments, the UNC researchers showed that PAP removes the phosphate group, generating adenosine. Their study is the first to identify and characterize the role of such a protein in pain-sensing neurons.

Zylka and his colleagues are now searching for additional proteins that degrade nucleotides in these neurons. They are also working to develop small molecules that interact with PAP to enhance or mimic its activity.

"It is entirely possible that PAP itself could be used as a treatment for pain, through an injection just like morphine," Zylka said. "But we would like to modify it to be taken in pill form. By taking this field in a new direction, we are encouraged and hopeful that we will be able to devise new treatments for pain."

Les Lang | EurekAlert!
Further information:
http://www.unc.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>