Cedars-Sinai Regenerative Medicine Institute to Supply Stem Cells to Scientists Developing Treatments for Huntington’s Disease

As part of the $3.7 million grant from the National Institutes of Health, the Cedars-Sinai Regenerative Medicine Institute, directed by Clive Svendsen, Ph.D., will supply scientists at five leading laboratories, including Cedars-Sinai, with all the adult stem cells used in the study.

The consortium comprises a partnership of five leading Huntington's disease laboratories at Cedars-Sinai, the Gladstone Institutes, Johns Hopkins, Massachusetts General Hospital and the University of California at Irvine.

Svendsen, who recently joined the Cedars-Sinai Regenerative Medicine Institute, is a prominent stem cell scientist whose groundbreaking research focuses on both modeling and treating neurodegenerative disorders such as ALS (amyotrophic lateral sclerosis or Lou Gehrig’s disease) and Parkinson’s disease using a combination of stem cells and powerful growth factors. Prior to joining Cedars-Sinai, Svendsen served as director of the National Institutes of Health-funded Stem Cell Training Program at University of Wisconsin-Madison and as editor of the Encyclopedia of Stem Cell Research.

Huntington’s disease, also known as “Huntington's chorea” and “Woody Guthrie's disease,” is an incurable neurodegenerative genetic disorder that affects muscle coordination and some cognitive functions, such as memory. It can also affect personality, causing increased confusion and anger. More than 100,000 Americans and 1 million worldwide have Huntington’s or are at risk of inheriting the disease from a parent. Any child of an affected parent has a 50 percent risk of inheriting the disease.

The goal of the project is to compare stem cells from patients with Huntington’s with stem cells from healthy patients in an effort to understand why brain cells die in Huntington’s patients, causing uncontrollable body movements and psychological changes. The project will use induced pluripotent stem cell technology, which enables specialized stem cells to be generated from adults’ skin samples.

“Regenerative medicine could enable us to untangle the mystery of this inexorably fatal disease,” Svendsen said. “One of the problems we have faced is that treatments that work in animals are ineffective in people. Now we have an opportunity to study this disease at a cellular level and collaborate with others dedicated to finding effective treatments.”

The Huntington’s project is the first endeavor announced since Svendsen was selected as director of the Cedars-Sinai Regenerative Medicine Institute, which brings together basic scientists with specialist clinicians, physician scientists and translational scientists across multiple medical specialties to translate fundamental stem cell studies to therapeutic regenerative medicine. The Institute will be housed in new state-of-the-art laboratories being constructed for stem cell and regenerative medicine research. At the heart of the Institute will be a specialized core facility for the production of pluripotent stem cells (capable of making all tissues in the human body) from adult human skin biopsies. Cells produced within the Institute would be used in a variety of Cedars-Sinai Medical research programs (initially focusing on understanding the causes of and finding treatments for diseases of the brain, heart, eye, liver, kidney, pancreas and skeletal structures, as well as cancer and metabolic disorders).

“This grant underscores the leading role Dr. Svendsen and his team is playing in the application of stem cell treatments that offer future hope to patients with degenerative diseases,” said Shlomo Melmed, M.D., Cedars-Sinai’s senior vice president of academic affairs and dean of the medical faculty.

Media Contact

Sally Stewart prpacific.com

More Information:

http://www.cshs.org

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors