Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Catching Cancer Early by Chasing It

05.08.2013
Chinese Academy of Sciences Team Describes a Portable Diagnostic Device that can Travel to the Patient in the journal Biomicrofluidics

Reaching a clinic in time to receive an early diagnosis for cancer -- when the disease is most treatable -- is a global problem. And now a team of Chinese researchers proposes a global solution: have a user-friendly diagnostic device travel to the patient, anywhere in the world.

As described in the journal Biomicrofluidics, which is produced by AIP Publishing, a team led by Gang Li, Ph.D., from Shanghai Institute of Microsystem and Information Technology at the Chinese Academy of Sciences, is developing a portable device for point-of-care diagnostic testing to detect cancer at its earliest stages. It identifies cancer biomarkers, which are biological indicators of the disease that often circulate in the blood prior to the appearance of symptoms.

The new device is based on microfluidics -- a technology that has rapidly expanded over the past decade and involves miniature devices that tightly control and manipulate tiny amounts of fluids for analysis through channels at the micro- and nano-scales.

Researchers value microfluidic technology for its low cost, speedy analysis of fluids and non-turbulent flows, and small footprint, Li said.

Inexpensive and easy-to-use, the Li team's device eliminates the need for an external power supply by relying on a specially fabricated pump to sample reagents and move fluids through microchannels.

"Our device is well suited to helping early diagnosis in resource-limited settings where no mechanical pumps or power sources are readily available because it is portable, affordable, sensitive, and specific, and delivered by technology with a user-friendly analytical platform," Li said.

He noted that the specialized pump can be prepared in advance and stored in an air-tight package. To further suit it to low-tech, rural or field conditions of use, the device allows users to read results with the naked eye or a digital camera, eliminating the need for any expensive and complicated equipment.

The article, "Direct Detection of Cancer Biomarkers in Blood Using a "place n play" modular PDMS pump" by Honglian Zhang, Gang Li, Lingying Liao, Hongju Mao, Qinghui Jin and Jianlong Zhao appears in the AIP Publishing journal Biomicrofluidics. See: http://dx.doi.org/10.1063/1.4807803

ABOUT THE JOURNAL
Biomicrofluidics, an AIP Publishing online-only journal, publishes research highlighting the fundamental physicochemical mechanisms associated with microfluidic and nanofluidic phenomena as well as novel microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications. See: http://bmf.aip.org

Jason Socrates Bardi | Newswise
Further information:
http://www.aip.org

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

NASA sees quick development of Hurricane Dora

27.06.2017 | Earth Sciences

New method to rapidly map the 'social networks' of proteins

27.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>