Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cardiologists identify mechanism that makes heart disease worse in diabetics

02.03.2012
UT Southwestern Medical Center cardiologists have uncovered how a specific protein's previously unsuspected role contributes to the deterioration of heart muscle in patients with diabetes. Investigators in the mouse study also have found a way to reverse the damage caused by this protein.

The new research, available online and published in the March 1 issue of the Journal of Clinical Investigation, was carried out in the laboratory of Dr. Joseph Hill, director of the Harry S. Moss Heart Center at UT Southwestern.

"If we can protect the heart of diabetic patients, it would be a significant breakthrough," said Dr. Hill, the study's senior author who also serves as chief of cardiology at the medical center. "These are fundamental research findings that can be applied to a patient's bedside."

Cardiovascular disease is the leading cause of illness and death in patients with diabetes, which affects more than 180 million people around the world, according to the American Heart Association. Diabetes puts additional stress on the heart – above and beyond that provoked by risk factors such as high blood pressure or coronary artery disease, Dr. Hill said.

"Elevated glucose and the insulin-resistant diabetic state are both toxic to the heart," he said.

Dr. Hill and his colleagues in this study were able to maintain heart function in mice exposed to a high fat diet by inactivating a protein called FoxO1. Previous investigations from Dr. Hill's laboratory demonstrated that FoxO proteins, a class of proteins that govern gene expression and regulate cell size, viability and metabolism, are tightly linked to the development of heart disease in mice with type 2 diabetes.

"If you eliminate FoxO1, the heart is protected from the stress of diabetes and continues to function normally," Dr. Hill said. "If we can prevent FoxO1 from being overactive, then there is a chance that we can protect the hearts of patients with diabetes."

Other UT Southwestern investigators participating in the study were Drs. Pavan Battiprolu, Zhao Wang and Myriam Iglewski, all postdoctoral researchers in internal medicine; Dr. Berdymammet Hojayev, postdoctoral researcher in pathology; Nan Jiang and John Shelton, senior research scientists in internal medicine; Dr. Xiang Luo, instructor in internal medicine; Dr. Robert Gerard, associate professor of internal medicine and molecular biology; Dr. Beverly Rothermel, assistant professor of internal medicine and molecular biology; Dr. Thomas Gillette, assistant professor of internal medicine; and Dr. Sergio Lavandero, visiting professor of internal medicine.

The research was supported by grants from the National Institutes of Health, the American Heart Association, the American Diabetes Association and the Jon Holden DeHaan Foundation.

This news release is available on our World Wide Web home page at www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via email, subscribe at www.utsouthwestern.edu/receivenews

Robin Russell | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>