Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cardiologists identify mechanism that makes heart disease worse in diabetics

UT Southwestern Medical Center cardiologists have uncovered how a specific protein's previously unsuspected role contributes to the deterioration of heart muscle in patients with diabetes. Investigators in the mouse study also have found a way to reverse the damage caused by this protein.

The new research, available online and published in the March 1 issue of the Journal of Clinical Investigation, was carried out in the laboratory of Dr. Joseph Hill, director of the Harry S. Moss Heart Center at UT Southwestern.

"If we can protect the heart of diabetic patients, it would be a significant breakthrough," said Dr. Hill, the study's senior author who also serves as chief of cardiology at the medical center. "These are fundamental research findings that can be applied to a patient's bedside."

Cardiovascular disease is the leading cause of illness and death in patients with diabetes, which affects more than 180 million people around the world, according to the American Heart Association. Diabetes puts additional stress on the heart – above and beyond that provoked by risk factors such as high blood pressure or coronary artery disease, Dr. Hill said.

"Elevated glucose and the insulin-resistant diabetic state are both toxic to the heart," he said.

Dr. Hill and his colleagues in this study were able to maintain heart function in mice exposed to a high fat diet by inactivating a protein called FoxO1. Previous investigations from Dr. Hill's laboratory demonstrated that FoxO proteins, a class of proteins that govern gene expression and regulate cell size, viability and metabolism, are tightly linked to the development of heart disease in mice with type 2 diabetes.

"If you eliminate FoxO1, the heart is protected from the stress of diabetes and continues to function normally," Dr. Hill said. "If we can prevent FoxO1 from being overactive, then there is a chance that we can protect the hearts of patients with diabetes."

Other UT Southwestern investigators participating in the study were Drs. Pavan Battiprolu, Zhao Wang and Myriam Iglewski, all postdoctoral researchers in internal medicine; Dr. Berdymammet Hojayev, postdoctoral researcher in pathology; Nan Jiang and John Shelton, senior research scientists in internal medicine; Dr. Xiang Luo, instructor in internal medicine; Dr. Robert Gerard, associate professor of internal medicine and molecular biology; Dr. Beverly Rothermel, assistant professor of internal medicine and molecular biology; Dr. Thomas Gillette, assistant professor of internal medicine; and Dr. Sergio Lavandero, visiting professor of internal medicine.

The research was supported by grants from the National Institutes of Health, the American Heart Association, the American Diabetes Association and the Jon Holden DeHaan Foundation.

This news release is available on our World Wide Web home page at

To automatically receive news releases from UT Southwestern via email, subscribe at

Robin Russell | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>