Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cardiac imaging in 2020

New molecular imaging techniques aim at detection of earliest steps of disease development and therapy response

Molecular imaging aims at the use of imaging probes to visualize specific cellular or sub cellular processes that occur before changes in morphology and function. This is highly relevant because impairments of such processes often are precursors or earliest stages of cardiovascular disease.

They are also involved in the early response to therapy or may identify candidates most suitable for a specific therapy. Probes for multiple molecular pathways, including cardiac metabolism, cell death, neurotransmission, receptors, cell-matrix interaction and cell trafficking have been developed in early experimental work and are increasingly translated into the clinical arena.

Several different imaging techniques can be used for detection of molecular probes, including nuclear imaging, magnetic resonance imaging, ultrasound and optical imaging, although nuclear imaging techniques, and especially positron emission tomography (PET) are currently most promising because of their superior sensitivity for detection of small amounts of highly specific radioactive molecular probes in the body. The new generation of hybrid imaging system, which integrate PET with X-ray computed tomography (CT) will further refine the application of molecular imaging probes, because co registration with a high-resolution CT will allow for better localization of the specific molecular signal from PET.

Applications that are currently being tested in early clinical stages include the identification of individuals at risk for atherosclerotic plaque rupture, identification of risk for development of heart failure and/or fatal ventricular arrhythmia, and monitoring of novel therapies such as stem cell therapy or gene delivery.

The field is still in its infancy and strong translational efforts need to continue to make it a clinical reality in the next years. But there is a strong notion that, in the future era of personalized molecular medicine, molecular imaging will play a key role for guidance of clinical decision making based on individual disease biology.

ESC Press Office | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>