Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon monoxide could hold promise of effective preeclampsia treatment, prevention

20.09.2013
Preeclampsia (PE) is a high blood pressure disorder that occurs during pregnancy and which can cause illness or death for the fetus and mother-to-be.

There is currently no cure except to deliver the fetus, perhaps prematurely, or remove the placenta, a key organ that binds the pair. Women who smoke during pregnancy have been found to have as much as a 33 percent lower rate of preeclampsia for reasons that are unclear.

A new study using an animal model to mimic key effects of PE in humans, and led by Graeme Smith of Queen's University, Canada, may help explain the lower incidence of PE in some smokers. The study also suggests a therapy that could offer similar protection against PE with none of smoking's well-known risks.

The article is entitled "Chronic Carbon Monoxide Inhalation During Pregnancy Augments Uterine Artery Blood Flow and Uteroplacental Vascular Growth in Mice." It appears in the Articles in PresS edition of the American Journal of Physiology – Regulatory, Integrative, and Comparative Physiology, published by the American Physiological Society. It is available online at http://bit.ly/18tQcyL.

Background

Research has found that, compared with that of healthy pregnant women, the breath of women who are diagnosed with PE contains significantly lower levels of carbon monoxide (CO), one of the combustible elements in cigarettes and which is not present in smokeless tobacco. Although toxic at high levels, low levels of CO are produced naturally by the body and have positive effects.

This study, the first to look at the effects of CO on the placenta in mice, found that exposing the animals to inhalable CO increased blood flow and vascular growth in the developing placenta, created more, bigger, and stronger connections to the mother's uterus, a process that provides more oxygen and nutrients to the fetus. And, since PE is a multifaceted disorder that begins with abnormal placental development before progressing to maternal disease, the results also suggest the possibility of preventing or treating early PE in humans with controlled CO dosages.

Methodology

Beginning on gestation day, pregnant female mice were placed in a sealed chamber with as much food and water as they wanted and exposed to CO, either chronically or acutely twice during gestation, at levels that allowed mouse CO blood levels to reach levels comparable to a one-pack-per-day female smoker. Maternal weight, live fetuses, fetal resorptions, and implantation sites were compared to control mice. Doppler analysis was performed on day 5 (baseline), 10 (when placental structure has formed and blood begins to cross the placenta to the fetus), and 14 (when blood velocity is well-established and fetal vasculature begins). Mice were then anesthetized and a cast was made of the entire uterus and blood vessels, then mounted and three-dimensionally imaged by micro-CT.

Results

Exposure to CO either continuously or in specific doses did not affect maternal weight (used as a measure of health) or litter size. Compared to controls, CO exposure did lead to increased vessel diameter, a significant increase in the number of radial artery branches, and significantly higher maternal blood flow.

Importance of the Findings

The study, according to Dr. Smith, confirms for the first time in vivo that CO has a beneficial effect at the placental level. It also provides an explanation for the lower incidence of PE among smokers, whose CO levels are higher. Positive changes in placental development in mice breathing additional CO – and earlier studies in the Smith lab showing these levels of CO had no negative effect on the developing fetus -- suggest a potential role for CO inhalations in preventing PE in patients at risk (perhaps because of severe PE in a previous pregnancy) or in attenuating early stage PE, preventing abnormal placental development from progressing to maternal disease.

Study Team

In addition to Dr. Smith, the study team consisted of Carolina Venditti, Casselman and Malia SQ Murphy, also of Queen's University; S. Lee Adamson of Mount Sinai Hospital, Toronto, and the University of Toronto; and John G. Sled of the Hospital for Sick Children's Mouse Imaging Centre and the University of Toronto.

Physiology is the study of how molecules, cells, tissues, and organs function in health and disease. Established in 1887, the American Physiological Society (APS) was the first US society in the biomedical sciences field. The Society represents more than 11,000 members and publishes 14 peer-reviewed journals with a worldwide readership.

NOTE TO EDITORS: To schedule an interview with Dr. Smith, please contact Donna Krupa at dkrupa@the-aps.org, @Phyziochick, or 301.634.7209. The article is available online at http://bit.ly/18tQcyL.

Donna Krupa | EurekAlert!
Further information:
http://www.the-aps.org

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>