Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbohydrate acts as tumor suppressor

08.07.2009
Scientists at Burnham Institute for Medical Research (Burnham) have discovered that specialized complex sugar molecules (glycans) that anchor cells into place act as tumor suppressors in breast and prostate cancers.

These glycans play a critical role in cell adhesion in normal cells, and their decrease or loss leads to increased cell migration by invasive cancer cells and metastasis.

An increase in expression of the enzyme that produces these glycans, â3GnT1, resulted in a significant reduction in tumor activity. The research was published in the journal Proceedings of the National Academy of Sciences.

The specialized glycans are capable of binding to laminin and are attached to the á-DG cell surface protein. This binding facilitates adhesion between epithelial and basement membrane cells and prevents cells from migrating. The team of scientists, led by Professor Minoru Fukuda, Ph.D., demonstrated that â3GnT1 controls the synthesis of laminin-binding glycans in concert with the genes LARGE/LARGE2. Down-regulation of â3GnT1 reduces the number of glycans, leading to greater movement by invasive cancer cells. However, when the researchers forced aggressive cancer cells to express â3GnT1, the laminin-binding glycans were restored and tumor formation decreased.

"These results indicate that certain carbohydrates on normal cells and enzymes that synthesize those glycans, such as â3GnT1, function as tumor suppressors," said Dr. Fukuda." Upregulation of â3GnT1 may become a novel way to treat cancer."

Using antibodies, the team investigated the expression of both á-DG and its associated glycans in both normal and cancerous cells. They found that the quantity of á-DG was similar in both cell types, but the level of attached glycans was reduced in the cancer cells. Further study showed that prostate cancer cells that highly expressed the á-DG glycans produced smaller tumors. The team also found that when they knocked down â3GnT1 expression by RNA interference, which reduces protein expression, the amount of glycans decreased even when LARGE was overexpressed.

The scientists demonstrated that â3GnT1 plays a key role in forming laminin-binding glycans attached to á-DG, which in turn reduces cancer cell movement. The study provides a new understanding of the role that complex carbohydrates play in cancer and could lead to new directions in the development of therapeutics.

About Burnham Institute for Medical Research

Burnham Institute for Medical Research is dedicated to revealing the fundamental molecular causes of disease and devising the innovative therapies of tomorrow. Burnham, with operations in California and Florida, is one of the fastest-growing research institutes in the country. The Institute ranks among the top-four institutions nationally for NIH grant funding and among the top-25 organizations worldwide for its research impact. Burnham utilizes a unique, collaborative approach to medical research and has established major research programs in cancer, neurodegeneration, diabetes, infectious and inflammatory and childhood diseases. The Institute is known for its world-class capabilities in stem cell research and drug discovery technologies. Burnham is a nonprofit, public benefit corporation.

Josh Baxt | EurekAlert!
Further information:
http://www.burnham.org

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>