Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbohydrate acts as tumor suppressor

08.07.2009
Scientists at Burnham Institute for Medical Research (Burnham) have discovered that specialized complex sugar molecules (glycans) that anchor cells into place act as tumor suppressors in breast and prostate cancers.

These glycans play a critical role in cell adhesion in normal cells, and their decrease or loss leads to increased cell migration by invasive cancer cells and metastasis.

An increase in expression of the enzyme that produces these glycans, â3GnT1, resulted in a significant reduction in tumor activity. The research was published in the journal Proceedings of the National Academy of Sciences.

The specialized glycans are capable of binding to laminin and are attached to the á-DG cell surface protein. This binding facilitates adhesion between epithelial and basement membrane cells and prevents cells from migrating. The team of scientists, led by Professor Minoru Fukuda, Ph.D., demonstrated that â3GnT1 controls the synthesis of laminin-binding glycans in concert with the genes LARGE/LARGE2. Down-regulation of â3GnT1 reduces the number of glycans, leading to greater movement by invasive cancer cells. However, when the researchers forced aggressive cancer cells to express â3GnT1, the laminin-binding glycans were restored and tumor formation decreased.

"These results indicate that certain carbohydrates on normal cells and enzymes that synthesize those glycans, such as â3GnT1, function as tumor suppressors," said Dr. Fukuda." Upregulation of â3GnT1 may become a novel way to treat cancer."

Using antibodies, the team investigated the expression of both á-DG and its associated glycans in both normal and cancerous cells. They found that the quantity of á-DG was similar in both cell types, but the level of attached glycans was reduced in the cancer cells. Further study showed that prostate cancer cells that highly expressed the á-DG glycans produced smaller tumors. The team also found that when they knocked down â3GnT1 expression by RNA interference, which reduces protein expression, the amount of glycans decreased even when LARGE was overexpressed.

The scientists demonstrated that â3GnT1 plays a key role in forming laminin-binding glycans attached to á-DG, which in turn reduces cancer cell movement. The study provides a new understanding of the role that complex carbohydrates play in cancer and could lead to new directions in the development of therapeutics.

About Burnham Institute for Medical Research

Burnham Institute for Medical Research is dedicated to revealing the fundamental molecular causes of disease and devising the innovative therapies of tomorrow. Burnham, with operations in California and Florida, is one of the fastest-growing research institutes in the country. The Institute ranks among the top-four institutions nationally for NIH grant funding and among the top-25 organizations worldwide for its research impact. Burnham utilizes a unique, collaborative approach to medical research and has established major research programs in cancer, neurodegeneration, diabetes, infectious and inflammatory and childhood diseases. The Institute is known for its world-class capabilities in stem cell research and drug discovery technologies. Burnham is a nonprofit, public benefit corporation.

Josh Baxt | EurekAlert!
Further information:
http://www.burnham.org

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>