Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carb Synthesis Sheds Light on Promising Tuberculosis Drug Target

24.06.2009
A fundamental question about how sugar units are strung together into long carbohydrate chains has also pinpointed a promising way to target new medicines against tuberculosis.

Working with components of the tuberculosis bacterium, researchers from the University of Wisconsin-Madison identified an unusual process by which the pathogen builds an important structural carbohydrate.

In addition to its implications for human health, the mechanism offers insight into a widespread but poorly understood basic biological function — controlling the length of carbohydrate polymers.

“Carbohydrate polymers are the most abundant organic molecules on the planet, and it’s amazing that we don’t know more about these are made,” says Laura Kiessling, a professor of chemistry and biochemistry at UW-Madison. “There’s not much known about how length is controlled in these carbohydrate polymers.”

Kiessling is senior author, along with graduate students John May and Rebecca Splain and postdoctoral fellow Christine Brotschi, of a new study appearing in the online Early Edition of the Proceedings of the National Academy of Sciences the week of June 22.

Most carbohydrates exist as many sugar molecules linked into long chains, or polymers. The right number of sugars in the chain is vital for them to work properly, but different types of carbohydrate polymers range from a few dozen sugars in some bacterial molecules to tens of thousands of sugar links in cellulose, a common plant material.

Despite its importance, it's not clear how carbohydrate length is determined, Kiessling says. Unlike some biological chains — such as DNA and proteins — that are built off a template that guides the length of the final product, carbohydrate-synthesizing enzymes work without templates.

“Nature has strategies to generate polymers of different lengths, but we know very little about those strategies,” she says. “If you make something too short, it’s probably not going to function in the role that you want, and if you make something too long, you’re wasting energy that you need to use elsewhere.”

The research team focused on an enzyme called GlfT2 that is responsible for building a critical carbohydrate component of the TB bacterial cell wall.

The researchers found that a small fatty component at the starting end binds to the enzyme and helps it track the length of the growing polymer. As the enzyme adds more and more sugar units to the opposite end, the chain becomes increasingly unwieldy.

“If the chain gets too long, it gets hard to hold on to both of the ends, so the chain falls off” the synthesizing enzyme, Kiessling says, forming a completed carbohydrate polymer.

The researchers believe that the enzymes responsible for building different types of carbohydrates exceed their comfort level at different points, leading to molecules of different prescribed lengths.

The current report is the first description of this “tethering” mechanism — named for the fatty lipid that tethers the start of the polymer to the enzyme — in carbohydrate synthesis, Kiessling says, though it may prove to be common among other organisms as well.

In addition to providing insight into what may be a general mechanism for designing and building carbohydrates, the work gives insight into developing new therapeutics against TB. The GlfT2 enzyme is essential for bacterial survival and growth but has never yet been targeted by potential treatment methods. Knowing that the enzyme has two binding sites — one for each end of the growing carbohydrate — makes it an especially appealing candidate.

“Our mechanism provides a blueprint for strategies to block a new anti-mycobacterial target,” Kiessling says.

New drug targets will be critical in the fight against tuberculosis, as drug-resistant strains are becoming increasingly widespread. The carbohydrate-synthesizing enzyme represents an untapped and promising resource for crippling even strains that are resistant to current drugs.

The prevalence of carbohydrate polymers in biological systems also means that understanding how their length is controlled has many possible applications, ranging from designing more potent and effective vaccines to facilitating the production of useful fuels from plant materials.

“It’s a nice illustration of how basic research can lead to applications that are very practical,” says Kiessling.

The research was funded by the National Institutes of Health, National Science Foundation, American Chemical Society and Swiss National Science Foundation.

Laura Kiessling | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Satellite-based Laser Measurement Technology against Climate Change

17.01.2017 | Machine Engineering

Studying fundamental particles in materials

17.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>