Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carb Synthesis Sheds Light on Promising Tuberculosis Drug Target

24.06.2009
A fundamental question about how sugar units are strung together into long carbohydrate chains has also pinpointed a promising way to target new medicines against tuberculosis.

Working with components of the tuberculosis bacterium, researchers from the University of Wisconsin-Madison identified an unusual process by which the pathogen builds an important structural carbohydrate.

In addition to its implications for human health, the mechanism offers insight into a widespread but poorly understood basic biological function — controlling the length of carbohydrate polymers.

“Carbohydrate polymers are the most abundant organic molecules on the planet, and it’s amazing that we don’t know more about these are made,” says Laura Kiessling, a professor of chemistry and biochemistry at UW-Madison. “There’s not much known about how length is controlled in these carbohydrate polymers.”

Kiessling is senior author, along with graduate students John May and Rebecca Splain and postdoctoral fellow Christine Brotschi, of a new study appearing in the online Early Edition of the Proceedings of the National Academy of Sciences the week of June 22.

Most carbohydrates exist as many sugar molecules linked into long chains, or polymers. The right number of sugars in the chain is vital for them to work properly, but different types of carbohydrate polymers range from a few dozen sugars in some bacterial molecules to tens of thousands of sugar links in cellulose, a common plant material.

Despite its importance, it's not clear how carbohydrate length is determined, Kiessling says. Unlike some biological chains — such as DNA and proteins — that are built off a template that guides the length of the final product, carbohydrate-synthesizing enzymes work without templates.

“Nature has strategies to generate polymers of different lengths, but we know very little about those strategies,” she says. “If you make something too short, it’s probably not going to function in the role that you want, and if you make something too long, you’re wasting energy that you need to use elsewhere.”

The research team focused on an enzyme called GlfT2 that is responsible for building a critical carbohydrate component of the TB bacterial cell wall.

The researchers found that a small fatty component at the starting end binds to the enzyme and helps it track the length of the growing polymer. As the enzyme adds more and more sugar units to the opposite end, the chain becomes increasingly unwieldy.

“If the chain gets too long, it gets hard to hold on to both of the ends, so the chain falls off” the synthesizing enzyme, Kiessling says, forming a completed carbohydrate polymer.

The researchers believe that the enzymes responsible for building different types of carbohydrates exceed their comfort level at different points, leading to molecules of different prescribed lengths.

The current report is the first description of this “tethering” mechanism — named for the fatty lipid that tethers the start of the polymer to the enzyme — in carbohydrate synthesis, Kiessling says, though it may prove to be common among other organisms as well.

In addition to providing insight into what may be a general mechanism for designing and building carbohydrates, the work gives insight into developing new therapeutics against TB. The GlfT2 enzyme is essential for bacterial survival and growth but has never yet been targeted by potential treatment methods. Knowing that the enzyme has two binding sites — one for each end of the growing carbohydrate — makes it an especially appealing candidate.

“Our mechanism provides a blueprint for strategies to block a new anti-mycobacterial target,” Kiessling says.

New drug targets will be critical in the fight against tuberculosis, as drug-resistant strains are becoming increasingly widespread. The carbohydrate-synthesizing enzyme represents an untapped and promising resource for crippling even strains that are resistant to current drugs.

The prevalence of carbohydrate polymers in biological systems also means that understanding how their length is controlled has many possible applications, ranging from designing more potent and effective vaccines to facilitating the production of useful fuels from plant materials.

“It’s a nice illustration of how basic research can lead to applications that are very practical,” says Kiessling.

The research was funded by the National Institutes of Health, National Science Foundation, American Chemical Society and Swiss National Science Foundation.

Laura Kiessling | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>