Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Use of cannabinoids (marijuana) could help post-traumatic stress disorder patients

05.11.2009
Use of cannabinoids (marijuana) could assist in the treatment of post-traumatic stress disorder patients. This is exposed in a new study carried out at the Learning and Memory Lab in the University of Haifa’s Department of Psychology. The study, carried out by research student Eti Ganon-Elazar under the supervision of Dr. Irit Akirav, was published in the prestigious Journal of Neuroscience.

In most cases, the result of experiencing a traumatic event - a car accident or terror attack - is the appearance of medical and psychological symptoms that affect various functions, but which pass. However, some 10%-30% of people who experience a traumatic event develop post-traumatic stress disorder, a condition in which the patient continues to suffer stress symptoms for months and even years after the traumatic event.

Symptoms include reawakened trauma, avoidance of anything that could recall the trauma, and psychological and physiological disturbances. One of the problems in the course of treating trauma patients is that a person is frequently exposed to additional stress, which hinders the patient’s overcoming the trauma.

The present study, carried out by Dr. Akirav and research student Eti Ganon-Elazar, aimed to examine the efficiency of cannabinoids as a medical treatment for coping with post-traumatic stress. The researchers used a synthetic form of marijuana, which has similar properties to the natural plant, and they chose to use a rat model, which presents similar physiological responses to stress to that of humans.

The first stage of the research examined how long it took for the rats to overcome a traumatic experience, without any intervention. A cell colored white on one side and black on the other was prepared. The rats were placed in the white area, and as soon as they moved over to the black area, which they prefer, they received a light electric shock. Each day they were brought to the cell and placed back in the white area. Immediately following exposure to the traumatic experience, the rats would not move to the black area voluntarily, but a few days later after not receiving further electric shocks in the black area, they learned that it is safe again and moved there without hesitation.

Next, the researchers introduced an element of stress. A second group of rats were placed on a small, elevated platform after receiving the electric shock, which added stress to the traumatic experience. These rats abstained from returning to the black area in the cell for much longer, which shows that the exposure to additional stress does indeed hinder the process of overcoming trauma.

The third stage of the research examined yet another group of rats. These were exposed to the traumatic and additional stress events, but just before being elevated on the platform received an injection of synthetic marijuana in the amygdala area of the brain - a specific area known to be connected to emotive memory. These rats agreed to enter the black area after the same amount of time as the first group - showing that the synthetic marijuana cancelled out the symptoms of stress. Refining the results of this study, the researchers then administered marijuana injections at different points in time on additional groups of rats, and found that regardless of when exactly the injection was administered, it prevented the surfacing of stress symptoms.

Dr. Akirav and Ganon-Elazar also examined hormonal changes in the course of the experiment and found that synthetic marijuana prevents increased release of the stress hormone that the body produces in response to stress.

According to Dr. Akirav, the results of this study show that cannabinoids can play an important role in stress-related disorders. “The results of our research should encourage psychiatric investigation into the use of cannabinoids in post-traumatic stress patients,” she concludes.

Rachel Feldman | EurekAlert!
Further information:
http://www.haifa.ac.il

More articles from Health and Medicine:

nachricht Improving memory with magnets
28.03.2017 | McGill University

nachricht Graphene-based neural probes probe brain activity in high resolution
28.03.2017 | Graphene Flagship

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>