Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New cancer therapy using ultra-violet C (UVC) pulse flash irradiation

22.08.2012
Medical scientists at Tokai University School of Medicine in Japan announce the development of a new cancer therapy using ultra violet C (UVC) pulses of light. Details of these findings will be described by Johbu Itoh at the International Congress of Histochemistry and Cytochemistry (ICHC 2012), 26–29 August, 2012, Kyoto.

Johbu Itoh at the Tokai University School of Medicine in Japan has developed a new and highly effective cancer therapy method where cancer cells are irradiation with ultraviolet C (UVC) light.


MCF7: neoplastic cell, COS7:non-neoplastic cell. The Ultra Violet C (UVC) pulse flash irradiation only selectivity caused death of neoplastic cells, and not non-neoplastic cells. © Tokai University

The new method employs high intensity-UVC pulse flash rays (UVCPFR) of a broad UVC spectrum (230 to 280 nm) produced by a modified UV-flash sterilization system (BHX200). The experiments showed the pulsed nature of the spectrum to enhance the efficiency of destruction of neoplastic cells.

Importantly, the research demonstrates that under the appropriate UVC irradiation conditions only neoplastic cell were destroyed, and non-neoplastic cells did not reach conditions of cell death.

Background, results, and implications

The well-known "a germicidal light" of low pressure mercury lamps (UV lamp) is widely used for sterilizing medical instruments. However, it takes several hours for the weak light from UV lamps to have their germicidal effects.

In contrast, the sterilization effects of UV pulsed flash rays (wavelengths of 230–280nm and peak wavelength of 248 nm) show promise as more efficient and rapid means of destroying a wider range of bacteria because this type of irradiation produces light whose energy is tens of thousands of times greater for a given area of irradiation, compared with conventional UV lamps (65W equivalency).

UVC pulse flash rays (UVCPFR) with 1–10 continuous flashes per second can be produced by powerful discharge of xenon gas. Johbu Itoh and colleagues at the Tokai University School of Medicine has developed and established UVCPFR therapy system for cancer therapy.

The researchers irradiated cells with pulsed light UVCPFR and caused functional disorder to produce cell injury and/or a functional obstruction only to neoplastic cells. Higher ultraviolet radiation sensitivity in the UVC range was observed in neoplastic cells compared to non-neoplastic cells. That is, a short burst of ultraviolet radiation was sufficient to selectively induce injury and death to neoplastic cells.

Furthermore, experiments showed UVCPFR to cause cell death within a few seconds. One of the major features of this method is that below a certain range of irradiation conditions, damage to intact or non-neoplastic cells can be largely ignored, and only neoplastic cells die. This method offers a simple means of reducing the burden on patients undergoing cancer therapy. Itoh and colleagues plan to deveop this system compatible for cancer treatment using endoscopy, laser microscopy, and other such light irradiation equipment.
For further information contact

Johbu Itoh, Ph.D.
Dept. of Cell Biology and Histology,
Education and Research Support Center
Tokai University School of Medicine
143 Shimokasuya Isehara Kanagawa 259-1193
Japan
TEL: +81-463-93-1121 Ext.2581
FAX: +81-463-91-1370
E-mail:itohj@is.icc.u-tokai.ac.jp

References
1. Japanese patent: 4712905
2. Website of the 14th International Congress of Histochemistry and Cytochemistry (ICHC 2012), 26 –29 August, 2012, Kyoto, Japan: http://www.acplan.jp/ichc2012/ (direct link below)

Source: Tokai University School of Medicine, Isehara, Japan.

Adarsh Sandhu | Research asia research news
Further information:
http://www.u-tokai.ac.jp
http://www.researchsea.com

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

Large-scale battery storage system in field trial

11.12.2017 | Power and Electrical Engineering

See, understand and experience the work of the future

11.12.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>