Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer risk from medical radiation may have been overestimated

01.12.2010
The risk of developing radiation-induced cancer from computed tomography (CT) may be lower than previously thought, according to a study presented today at the annual meeting of the Radiological Society of North America (RSNA).

"Radiation from medical imaging has gotten a tremendous amount of attention in recent years," said Aabed Meer, an M.D. candidate at Stanford University in Palo Alto, Calif. "This is one of the first studies to track CT utilization in such a large population."

The researchers conducted a retrospective study using Medicare claims from 1998 through 2005 to analyze the distribution of CT scans, determine the ionizing radiation exposure associated with the exams and estimate the associated cancer risk in a population of older adults.

"The study focused on the elderly Medicare population, which receives the highest amount of per capita radiation," Meer said. "We analyzed more than 10 million records from the Medicare claims database."

The data were studied in two groups, including 5,267,230 records from 1998 through 2001 and 5,555,345 records from 2002 through 2005. For each group, the researchers analyzed the number and types of CT scans that each patient received to determine the percentage of patients exposed to "low" radiation doses of 50 millisieverts (mSv) to 100mSv and "high" radiation doses, in excess of 100mSv. They then used standard cancer risk models to estimate the number of cancers induced.

CT scans of the head were the most common examinations, representing 25 percent of the first group and 30 percent of the second group. However, abdominal CT delivered the greatest proportion of radiation, accounting for approximately 40 percent of the total radiation exposure in each group. Imaging of the pelvis and chest represented the second and third largest sources of radiation.

From 1998 to 2001, 42 percent of patients underwent CT scans. From 2002 to 2005, 49 percent of patients underwent CT scans. The percentage of patients exposed to radiation doses in both the low and high ranges approximately doubled from the first group to the second group. The researchers found this to be consistent with the increasing use of high-speed CT in patient diagnosis and management.

Cancer incidences related to ionizing radiation from CT were estimated to be 0.02 percent and 0.04 percent of the two groups, respectively.

"Our findings indicate a significantly lower risk of developing cancer from CT than previous estimates of 1.5 percent to 2.0 percent of the population," said coauthor Scott Atlas, M.D., chief of neuroradiology at the Stanford University Medical Center. "Regardless, the increasing reliance on CT scans underscores the importance of monitoring CT utilization and its consequences."

Other coauthors are Laurence Baker, Ph.D., and Pat A. Basu, M.D.

Note: Copies of RSNA 2010 news releases and electronic images will be available online at RSNA.org/press10 beginning Monday, Nov. 29.

RSNA is an association of more than 46,000 radiologists, radiation oncologists, medical physicists and related scientists committed to excellence in patient care through education and research. The Society is based in Oak Brook, Ill. (RSNA.org)

Editor's note: The data in these releases may differ from those in the published abstract and those actually presented at the meeting, as researchers continue to update their data right up until the meeting. To ensure you are using the most up-to-date information, please call the RSNA Newsroom at 1-312-949-3233.

For patient-friendly information on radiation safety, visit RadiologyInfo.org

Linda Brooks | EurekAlert!
Further information:
http://www.rsna.org

Further reports about: CT scans Cancer Medicare RSNA ionizing radiation radiation dose radiation exposure

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>