Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer-related pathways reveal potential treatment target for congenital heart disease

22.02.2011
Cross-disciplinary teams of scientists studying genetic pathways that are mutated in many forms of cancer, but which also cause certain forms of congenital heart disease – including hypertrophic cardiomyopathy (HCM), a thickening of the heart muscle that is the leading cause of sudden death in children and young adults –, have introduced these mutations into mice and successfully treated HCM in the lab.

In two separate but related studies at University Health Network (UHN), Toronto, and Beth Israel Deaconess Medical Centre (BIDMC), Boston, the scientists proved that two drugs – one already approved as an immunosuppressant, the other being tested as an anti- cancer agent– could prevent and reverse HCM in mouse models of congenital heart disease.

The research findings are published online today ahead of the March issue of the Journal of Clinical Investigation (manuscript # 44929). Both studies were co-led by UHN's Dr. Benjamin Neel, Director, Ontario Cancer Institute, which includes The Campbell Family Cancer Research Institute. Dr. Neel is also a Professor, Department of Medical Biophysics, University of Toronto, and holds a Canada Research Chair in Cell Signaling.

"By studying two of the most commonly mutated pathways in cancer, discerning the mechanism by which they cause congenital disease, and treating two of these disorders with different drugs, we have identified potential therapeutic targets for human disease," says Dr. Neel. "This is what personalized medicine is all about: understanding in detail how different mutations cause disease, and then targeting these mutations appropriately to tailor individualized treatment."

He adds: "These findings exemplify the importance of basic biological research and collaboration across areas of specialization. In this instance, collaboration showed how understanding cancer can lead to unexpected insights into congenital heart disease, and vice versa."

The scientists were investigating how a cluster of congenital diseases known as "RASopathies" – defects caused by mutations in different genes in the so-called "RAS pathway" – develop. They focused on two genetic disorders: Noonan Syndrome, which occurs in 1 in 1,000-2,500 live births and causes short stature, facial, blood and cardiovascular abnormalities; and the much less common LEOPARD Syndrome, which features short stature, as well as skin, facial, skeletal and cardiovascular abnormalities. HCM is prevalent in both syndromes.

The UHN study team, co-led by Dr. Toshiyuki Araki, Assistant Scientist, Campbell Family Institute and Dr. Peter Backx, Senior Scientist, Toronto General Research Institute and the Peter Munk Cardiac Centre, and Professor of Medicine, Division of Cardiology and Department of Physiology, U of T, investigated Noonan Syndrome. The Boston team, led by Dr. Maria Kontaridis, Assistant Professor of Medicine Harvard Medical School and Division of Cardiology, BIDMC, investigated LEOPARD Syndrome.

The scientists introduced the genetic mutations that cause these syndromes into special strains of mice, and were able to reproduce the features of the human disorders. The Toronto group found that "excessive activity of an enzyme called ERK, a downstream target of the RAS pathway, caused HCM in Noonan Syndrome, and successfully used a drug that lowers the activity of this enzyme to decrease pathway activity and normalize all of the features of Noonan Syndrome," says Dr. Neel. The Boston group found that LEOPARD Syndrome results from excessive activity of a different enzyme downstream of RAS, called mTOR. Using the mTOR inhibitor Rapamycin, which is already approved as an immunosuppressant, they were able to reverse HCM in their mouse model of LEOPARD Syndrome.

"These research findings are important steps towards understanding the pathogenesis of these congenital syndromes, and point the way toward clinical trials of these agents in severely affected patients," says Dr. Neel.

The research was financially supported by grants and fellowships from the National Institutes of Health, the Canadian Institutes of Health Research, the Heart and Stroke Foundation of Ontario, the Frederick Banting and Charles Best Canada Graduate Scholarship, the Ontario Graduate Scholarship in Science and Technology, the Ontario Ministry of Health and Long Term Care, the Sao Paulo Research Foundation, the Milton Fund, the Beth Israel Deaconess Medical Centre Division of Cardiology, and The Princess Margaret Hospital Foundation.

About University Health Network

University Health Network consists of Toronto General, Toronto Western and Princess Margaret Hospitals. The scope of research and complexity of cases at University Health Network has made it a national and international source for discovery, education and patient care. It has the largest hospital-based research program in Canada, with major research in cardiology, transplantation, neurosciences, oncology, surgical innovation, infectious diseases, and genomic medicine. University Health Network is a research hospital affiliated with the University of Toronto. For more information, www.uhn.ca

Jane Finlayson | EurekAlert!
Further information:
http://www.uhn.on.ca

More articles from Health and Medicine:

nachricht The end of pneumonia? New vaccine offers hope
23.10.2017 | University at Buffalo

nachricht Scientists track ovarian cancers to site of origin: Fallopian tubes
23.10.2017 | Johns Hopkins Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>