Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer-related pathways reveal potential treatment target for congenital heart disease

22.02.2011
Cross-disciplinary teams of scientists studying genetic pathways that are mutated in many forms of cancer, but which also cause certain forms of congenital heart disease – including hypertrophic cardiomyopathy (HCM), a thickening of the heart muscle that is the leading cause of sudden death in children and young adults –, have introduced these mutations into mice and successfully treated HCM in the lab.

In two separate but related studies at University Health Network (UHN), Toronto, and Beth Israel Deaconess Medical Centre (BIDMC), Boston, the scientists proved that two drugs – one already approved as an immunosuppressant, the other being tested as an anti- cancer agent– could prevent and reverse HCM in mouse models of congenital heart disease.

The research findings are published online today ahead of the March issue of the Journal of Clinical Investigation (manuscript # 44929). Both studies were co-led by UHN's Dr. Benjamin Neel, Director, Ontario Cancer Institute, which includes The Campbell Family Cancer Research Institute. Dr. Neel is also a Professor, Department of Medical Biophysics, University of Toronto, and holds a Canada Research Chair in Cell Signaling.

"By studying two of the most commonly mutated pathways in cancer, discerning the mechanism by which they cause congenital disease, and treating two of these disorders with different drugs, we have identified potential therapeutic targets for human disease," says Dr. Neel. "This is what personalized medicine is all about: understanding in detail how different mutations cause disease, and then targeting these mutations appropriately to tailor individualized treatment."

He adds: "These findings exemplify the importance of basic biological research and collaboration across areas of specialization. In this instance, collaboration showed how understanding cancer can lead to unexpected insights into congenital heart disease, and vice versa."

The scientists were investigating how a cluster of congenital diseases known as "RASopathies" – defects caused by mutations in different genes in the so-called "RAS pathway" – develop. They focused on two genetic disorders: Noonan Syndrome, which occurs in 1 in 1,000-2,500 live births and causes short stature, facial, blood and cardiovascular abnormalities; and the much less common LEOPARD Syndrome, which features short stature, as well as skin, facial, skeletal and cardiovascular abnormalities. HCM is prevalent in both syndromes.

The UHN study team, co-led by Dr. Toshiyuki Araki, Assistant Scientist, Campbell Family Institute and Dr. Peter Backx, Senior Scientist, Toronto General Research Institute and the Peter Munk Cardiac Centre, and Professor of Medicine, Division of Cardiology and Department of Physiology, U of T, investigated Noonan Syndrome. The Boston team, led by Dr. Maria Kontaridis, Assistant Professor of Medicine Harvard Medical School and Division of Cardiology, BIDMC, investigated LEOPARD Syndrome.

The scientists introduced the genetic mutations that cause these syndromes into special strains of mice, and were able to reproduce the features of the human disorders. The Toronto group found that "excessive activity of an enzyme called ERK, a downstream target of the RAS pathway, caused HCM in Noonan Syndrome, and successfully used a drug that lowers the activity of this enzyme to decrease pathway activity and normalize all of the features of Noonan Syndrome," says Dr. Neel. The Boston group found that LEOPARD Syndrome results from excessive activity of a different enzyme downstream of RAS, called mTOR. Using the mTOR inhibitor Rapamycin, which is already approved as an immunosuppressant, they were able to reverse HCM in their mouse model of LEOPARD Syndrome.

"These research findings are important steps towards understanding the pathogenesis of these congenital syndromes, and point the way toward clinical trials of these agents in severely affected patients," says Dr. Neel.

The research was financially supported by grants and fellowships from the National Institutes of Health, the Canadian Institutes of Health Research, the Heart and Stroke Foundation of Ontario, the Frederick Banting and Charles Best Canada Graduate Scholarship, the Ontario Graduate Scholarship in Science and Technology, the Ontario Ministry of Health and Long Term Care, the Sao Paulo Research Foundation, the Milton Fund, the Beth Israel Deaconess Medical Centre Division of Cardiology, and The Princess Margaret Hospital Foundation.

About University Health Network

University Health Network consists of Toronto General, Toronto Western and Princess Margaret Hospitals. The scope of research and complexity of cases at University Health Network has made it a national and international source for discovery, education and patient care. It has the largest hospital-based research program in Canada, with major research in cardiology, transplantation, neurosciences, oncology, surgical innovation, infectious diseases, and genomic medicine. University Health Network is a research hospital affiliated with the University of Toronto. For more information, www.uhn.ca

Jane Finlayson | EurekAlert!
Further information:
http://www.uhn.on.ca

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>