Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer drugs may help treatment of schizophrenia

21.07.2011
Researchers have revealed the molecular pathway that is affected during the onset of schizophrenia and successfully alleviated symptoms of the illness in mice, using a cancer drug currently in advanced clinical trials

The research, published online in the journal Brain, is from a group led by Professor Peter Giese at King's College London, and offers new avenues for drug discovery.

Schizophrenia is one of the most common serious mental health conditions in the UK, and affects about 24 million people worldwide. The illness is a long-term mental health condition that causes a number of psychological symptoms, including hallucinations and delusions as well as behaviour changes. The exact cause of the illness is unknown, although it is generally believed to be a combination of genetic and environmental factors.

According to the World Health Organization, 90% of people with untreated schizophrenia are in developing countries. Current treatments for schizophrenia include both psychological treatments such as psychotherapy, counselling or cognitive behaviour therapy and/or medication. However, many of the antipsychotic drugs or major tranquillisers used to treat or manage the illness have very bad side-effects.

Professor Giese, based at the Institute of Psychiatry at King's, said: 'For the first time we have found that an enzyme activator called p35 is reduced in patients with schizophrenia and moreover, modelling this reduction in mice led to cognitive impairment typical for this disease. This gives us a better understanding of the changes that occur in the brain during the onset of schizophrenia.'

Proper brain development is ensured, in part, by the activation of a protein in the brain called Cdk5. The activation of Cdk5 requires the presence of an enzyme in the brain, called p35. The research found that in human post-mortem brains, there was approximately 50% less p35 in the brains of patients who had suffered from schizophrenia.

These molecular changes were then modelled and monitored in mice that had been modified to contain a comparable reduction in the p35 enzyme. As a result of this reduction in p35, the mice showed a reduction in synaptic proteins – important in maintaining neural connections – and displayed symptoms associated with schizophrenia, including learning impairments and inability to react to sensory stimuli.

Understanding this signalling pathway and the impact of low levels of p35, is important in finding potential future treatments for the disease.

Professor Giese continues: 'We noted that the reduction in p35 affects the same molecular changes targeted by a cancer drug called MS-275, so we administered this drug to the mice. We were excited to find that MS-275 not only addressed the molecular changes but also alleviated the symptoms associated with schizophrenia.'

He concludes: 'Our findings encourage the future exploration of these types of drugs for treating impaired cognition in schizophrenia.'

The research was funded by the Medical Research Council UK (MRC), the National Institutes of Health (USA), the Boehringer Ingelheim Fonds, Germany and the Deutsche Forschungsgemeinshaft.

CONTACT
Katherine Barnes
International Press Officer
King's College London
Email: katherine.barnes@kcl.ac.uk
Tel: +44 (0) 207 848 3076
Notes to editors:
Schizophrenia is associated with dysregulation of a Cdk5 activator that regulates synaptic protein expression and cognition, Brain, DOI: 1093/brain/awr155

A copy of the paper is available from the King's Press Office, and Professor Giese is available for media interviews on Wednesday and Thursday.

King's College London (www.kcl.ac.uk)

King's College London is one of the top 25 universities in the world (2010 QS international world rankings), The Sunday Times 'University of the Year 2010/11' and the fourth oldest in England. A research-led university based in the heart of London, King's has nearly 23,500 students (of whom more than 9,000 are graduate students) from nearly 140 countries, and some 6,000 employees. King's is in the second phase of a £1 billion redevelopment programme which is transforming its estate.

King's has an outstanding reputation for providing world-class teaching and cutting-edge research. In the 2008 Research Assessment Exercise for British universities, 23 departments were ranked in the top quartile of British universities; over half of our academic staff work in departments that are in the top 10 per cent in the UK in their field and can thus be classed as world leading. The College is in the top seven UK universities for research earnings and has an overall annual income of nearly £450 million.

King's has a particularly distinguished reputation in the humanities, law, the sciences (including a wide range of health areas such as psychiatry, medicine, nursing and dentistry) and social sciences including international affairs. It has played a major role in many of the advances that have shaped modern life, such as the discovery of the structure of DNA and research that led to the development of radio, television, mobile phones and radar. It is the largest centre for the education of healthcare professionals in Europe; no university has more Medical Research Council Centres.

King's College London and Guy's and St Thomas', King's College Hospital and South London and Maudsley NHS Foundation Trusts are part of King's Health Partners. King's Health Partners Academic Health Sciences Centre (AHSC) is a pioneering global collaboration between one of the world's leading research-led universities and three of London's most successful NHS Foundation Trusts, including leading teaching hospitals and comprehensive mental health services. For more information, visit: www.kingshealthpartners.org.

Katherine Barnes | EurekAlert!
Further information:
http://www.kcl.ac.uk

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>