Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cancer drugs may help treatment of schizophrenia

Researchers have revealed the molecular pathway that is affected during the onset of schizophrenia and successfully alleviated symptoms of the illness in mice, using a cancer drug currently in advanced clinical trials

The research, published online in the journal Brain, is from a group led by Professor Peter Giese at King's College London, and offers new avenues for drug discovery.

Schizophrenia is one of the most common serious mental health conditions in the UK, and affects about 24 million people worldwide. The illness is a long-term mental health condition that causes a number of psychological symptoms, including hallucinations and delusions as well as behaviour changes. The exact cause of the illness is unknown, although it is generally believed to be a combination of genetic and environmental factors.

According to the World Health Organization, 90% of people with untreated schizophrenia are in developing countries. Current treatments for schizophrenia include both psychological treatments such as psychotherapy, counselling or cognitive behaviour therapy and/or medication. However, many of the antipsychotic drugs or major tranquillisers used to treat or manage the illness have very bad side-effects.

Professor Giese, based at the Institute of Psychiatry at King's, said: 'For the first time we have found that an enzyme activator called p35 is reduced in patients with schizophrenia and moreover, modelling this reduction in mice led to cognitive impairment typical for this disease. This gives us a better understanding of the changes that occur in the brain during the onset of schizophrenia.'

Proper brain development is ensured, in part, by the activation of a protein in the brain called Cdk5. The activation of Cdk5 requires the presence of an enzyme in the brain, called p35. The research found that in human post-mortem brains, there was approximately 50% less p35 in the brains of patients who had suffered from schizophrenia.

These molecular changes were then modelled and monitored in mice that had been modified to contain a comparable reduction in the p35 enzyme. As a result of this reduction in p35, the mice showed a reduction in synaptic proteins – important in maintaining neural connections – and displayed symptoms associated with schizophrenia, including learning impairments and inability to react to sensory stimuli.

Understanding this signalling pathway and the impact of low levels of p35, is important in finding potential future treatments for the disease.

Professor Giese continues: 'We noted that the reduction in p35 affects the same molecular changes targeted by a cancer drug called MS-275, so we administered this drug to the mice. We were excited to find that MS-275 not only addressed the molecular changes but also alleviated the symptoms associated with schizophrenia.'

He concludes: 'Our findings encourage the future exploration of these types of drugs for treating impaired cognition in schizophrenia.'

The research was funded by the Medical Research Council UK (MRC), the National Institutes of Health (USA), the Boehringer Ingelheim Fonds, Germany and the Deutsche Forschungsgemeinshaft.

Katherine Barnes
International Press Officer
King's College London
Tel: +44 (0) 207 848 3076
Notes to editors:
Schizophrenia is associated with dysregulation of a Cdk5 activator that regulates synaptic protein expression and cognition, Brain, DOI: 1093/brain/awr155

A copy of the paper is available from the King's Press Office, and Professor Giese is available for media interviews on Wednesday and Thursday.

King's College London (

King's College London is one of the top 25 universities in the world (2010 QS international world rankings), The Sunday Times 'University of the Year 2010/11' and the fourth oldest in England. A research-led university based in the heart of London, King's has nearly 23,500 students (of whom more than 9,000 are graduate students) from nearly 140 countries, and some 6,000 employees. King's is in the second phase of a £1 billion redevelopment programme which is transforming its estate.

King's has an outstanding reputation for providing world-class teaching and cutting-edge research. In the 2008 Research Assessment Exercise for British universities, 23 departments were ranked in the top quartile of British universities; over half of our academic staff work in departments that are in the top 10 per cent in the UK in their field and can thus be classed as world leading. The College is in the top seven UK universities for research earnings and has an overall annual income of nearly £450 million.

King's has a particularly distinguished reputation in the humanities, law, the sciences (including a wide range of health areas such as psychiatry, medicine, nursing and dentistry) and social sciences including international affairs. It has played a major role in many of the advances that have shaped modern life, such as the discovery of the structure of DNA and research that led to the development of radio, television, mobile phones and radar. It is the largest centre for the education of healthcare professionals in Europe; no university has more Medical Research Council Centres.

King's College London and Guy's and St Thomas', King's College Hospital and South London and Maudsley NHS Foundation Trusts are part of King's Health Partners. King's Health Partners Academic Health Sciences Centre (AHSC) is a pioneering global collaboration between one of the world's leading research-led universities and three of London's most successful NHS Foundation Trusts, including leading teaching hospitals and comprehensive mental health services. For more information, visit:

Katherine Barnes | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>