Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel cancer drug reduces neuroblastoma growth by 75 percent

27.04.2009
M. D. Anderson-developed drug starves cancer cells of energy source in pre-clinical studies

Researchers from the Children's Cancer Hospital at The University of Texas M. D. Anderson Cancer Center have found a new drug that restricts the growth of neuroblastoma, a childhood brain cancer. The pre-clinical study was presented today in the plenary session at the 22nd annual meeting of the American Society of Pediatric Hematology/Oncology.

Alejandro Levy, M.D., fellow at the Children's Cancer Hospital at M. D. Anderson, presented research showing for the first time that the M. D. Anderson-developed drug, 3-BrOP, reduces tumor growth by more than 75 percent as a single agent. The study, conducted with human neuroblastoma cells transplanted into mice, showed how 3-BrOP, a glycolysis inhibitor, starved the cancer cells to death by shutting down their main energy source, glucose.

"We found that neuroblastoma cells, unlike healthy cells, are highly dependent on glycolysis for energy instead of more efficient means of energy production," said Levy. "Glycolysis is a process that breaks down sugar for energy, so by blocking that process with 3-BrOP, we are able to keep the tumors from producing energy, and this disrupts their ability to grow."

According to the American Cancer Society, approximately 650 children, mainly under the age of five, are diagnosed with neuroblastoma in the United States each year. Close to two-thirds of these children are diagnosed after the cancer has metastasized to other parts of the body. For these patients with high-risk neuroblastoma, long-term survival is less than 40 percent because the tumors are often resistant to traditional chemotherapy.

Pre-clinically, 3-BrOP has already been proven effective against other cancers including glioblastoma, colon cancer, lymphoma and acute leukemia. A Phase I clinical trial is planned to open this year for adult patients.

"As we explore alternative options to standard chemotherapy agents, we are finding drugs, like 3-BrOP, that have the potential to destroy cancer cells while leaving healthy cells unharmed," said Patrick Zweidler-McKay, M.D., Ph.D., assistant professor at the Children's Cancer Hospital and senior investigator of the study. "These drugs can often enhance the efficacy of other treatments, potentially leading to more successful combinations and better outcomes for our young patients."

Other investigators on the study were Lauren Akers, D.O., Maurizio Ghisoli, M.D., Timothy Graham, Lizhi Zeng, M.D., Riitta Nolo, M.D., Peter Zage, M.D., Ph.D., Wendy Fang, M.D., Sankaranarayanan Kannan, Ph.D., Anna Franklin, M.D., Peng Huang, M.D., Ph.D., and Patrick Zweidler-McKay, M.D., Ph.D.

About M. D. Anderson

The University of Texas M. D. Anderson Cancer Center in Houston ranks as one of the world's most respected centers focused on cancer patient care, research, education and prevention. M. D. Anderson is one of only 40 comprehensive cancer centers designated by the National Cancer Institute. For four of the past six years, including 2008, M. D. Anderson has ranked No. 1 in cancer care in "America's Best Hospitals," a survey published annually in U.S. News & World Report.

About the Children's Cancer Hospital at M. D. Anderson

The Children's Cancer Hospital at The University of Texas M. D. Anderson Cancer Center has been serving children, adolescents and young adults for more than 50 years. In addition to the groundbreaking research and quality of treatment available to pediatric patients, the Children's Cancer Hospital provides its patients with comprehensive programs that help the children lead more normal lives during and after treatment.

Lindsay Anderson | EurekAlert!
Further information:
http://www.mdanderson.org/children

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>