Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting Cancer Cells to Swallow Poison

10.01.2012
Nanotechnology Researchers Develop New Strategy to Deliver Chemotherapy to Prostate Cancer Cells

Honing chemotherapy delivery to cancer cells is a challenge for many researchers. Getting the cancer cells to take the chemotherapy "bait" is a greater challenge. But perhaps such a challenge has not been met with greater success than by the nanotechnology research team of Omid Farokhzad, MD, Brigham and Women's Hospital (BWH) Department of Anesthesiology Perioperative and Pain Medicine and Research.

In their latest study with researchers from Massachusetts Institute of Technology (MIT) and Massachusetts General Hospital, the BWH team created a drug delivery system that is able to effectively deliver a tremendous amount of chemotherapeutic drugs to prostate cancer cells.

The study is electronically published in the January 3, 2012 issue of ACS Nano.

The process involved is akin to building and equipping a car with the finest features, adding a passenger (in this case the cancer drug), and sending it off to its destination (in this case the cancer cell).

To design the "vehicle," researchers used a selection strategy developed by Farokhzad's team that allowed them to essentially select for ligands (molecules that bind to the cell surface) that could specifically target prostate cancer cells. The researchers then attached nanoparticles containing chemotherapy, in this case docetaxel, to these hand-picked ligands.

To understand Farokhzad's selection strategy, one must understand ligand behavior. While most ligands mainly have the ability to bind to cells, the strategy of Farokhzad and his colleagues allowed them to select specific ligands that were not only able to bind to prostate cancer cells, but also possessed two other important features: 1) they were smart enough to distinguish between cancer and non-cancer cells and 2) they were designed to be swallowed by cancer cells.

"Most ligands are engulfed by cells, but not efficiently," said Farokhzad. "We designed one that is intended to be engulfed."

Moreover, the ability for a ligand to intentionally be engulfed by a cell is crucial in drug delivery since it enables a significant amount of drug to enter the cancer cell, as opposed to remaining outside on the cell surface. This is a more effective method for cancer therapy.

Another important aspect of this drug delivery design is that these ligand-nanoparticle components are able to interact with multiple cancer markers (antigens) on the cell surface. Unlike other drug delivery systems, this makes it versatile and potentially more broadly applicable.

According to the study's lead author, Zeyu Xiao, PhD, a researcher in the BWH Laboratory of Nanomedicine and Biomaterials, current strategies for targeting nanoparticles for cancer therapy rely on combining nanoparticles with ligands that can target well-known cancer markers. Such strategies can be difficult to execute since most cancer cells do not have identifiable cell surface markers to distinguish themselves from normal cells.

"In this study, we developed a unique strategy that enables the nanoparticles to specifically target and efficiently be engulfed into any desired types and sub-types of cancer cells, even if their cancer markers are unknown," said Xiao. "Our strategy simplifies the development process of targeted nanoparticles and broadens their applications in cancer therapy."

This research was supported by the National Institutes of Health, the David Koch-Prostate Cancer Foundation, and the USA Department of Defense Prostate Cancer Research Program.

Marjorie Montemayor-Quellenberg | EurekAlert!
Further information:
http://www.brighamandwomens.org/

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Devils Hole: Ancient Traces of Climate History

24.05.2017 | Earth Sciences

Discovery of a Key Regulatory Gene in Cardiac Valve Formation

24.05.2017 | Life Sciences

A CLOUD of possibilities: Finding new therapies by combining drugs

24.05.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>