Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Canadian scientist develops world's most advanced drug to protect the brain after a stroke

01.03.2012
Scientists at the Toronto Western Research Institute (TWRI), Krembil Neuroscience Center, have developed a drug that protects the brain against the damaging effects of a stroke in a lab setting. This drug has been in development for a few years.

At this point, it has reached the most advanced stage of development among drugs created to reduce the brain's vulnerability to stroke damage (termed a "neuroprotectant").

Over 1000 attempts to develop such drugs by scientists worldwide have failed to be translated to a stage where they can be used in humans, leaving a major unmet need for stroke treatment. The drug developed by the TWRI team is the first to achieve a neuroprotective effect in the complex brain of primates, in settings that simulate those of human strokes. ischemic stroke.

The study, "Treatment of Stroke with a PSD95 inhibitor in the Gyrencephalic Primate Brain", published online today in Nature, shows how the drug, called a "PSD95 inhibitor" prevents brain cell death and preserves brain function when administered after a stroke has occurred.

"We are closer to having a treatment for stroke than we have ever been before," said Dr. Michael Tymianski, TWRI Senior Scientist and the study's lead author. "Stroke is the leading cause of death and disability worldwide and we believe that we now have a way to dramatically reduce its damaging effects."

During a stroke, regions of the brain are deprived of blood and oxygen. This causes a complex sequence of chemical reactions in the brain, which can result in neurological impairment or death. The PSD95 inhibitor published by the Toronto team acts to protect the brain by preventing the occurrence of these neurotoxic reactions.

The study used cynomolgus macaques, which bear genetic, anatomic and behaviour similarities to humans, as an ideal model to determine if this therapy would be beneficial in patients.

Animals that were treated with the PSD95 inhibitor after a stroke had greatly reduced brain damage and this translated to a preservation of neurological function. These improvements were observed in several scenarios that simulated human strokes. Specifically, when the treatment was given either early, or even at 3 hours, after the stroke onset, the animals exhibited remarkable recoveries. Benefits were also observed when the drug therapy was combined with conventional therapies (aimed at re-opening blocked arteries to the brain). Beneficial effects were observed even in a time window when conventional therapies on their own no longer have an effect.

"There is hope that this new drug could be used in conjunction with other treatments, such as thrombolytic agents or other means to restore blood flow to the brain, in order to further reduce the impact of stroke on patients," said Dr. Tymianski. "These findings are extremely exciting and our next step is to confirm these results in a clinical trial."

Dr. Michael Tymianski holds a Tier 1 Canada Research Chair in Translational Stroke Research. He is a neurosurgeon at Toronto Western Hospital, the Medical Director of the Neurovascular Therapeutics Program and the Interim Head of the Division of Neurosurgery at the University Health Network. He is also a Professor in the Department of Surgery and a member of the Institute of Medical Science at the University of Toronto.

About Krembil Neuroscience Centre

The Krembil Neuroscience Centre (KNC), located at Toronto Western Hospital, is home to one of the largest combined clinical and research neurological facilities in North America. Since opening in 2001, KNC has been recognized as a world leader through its research achievements, education and exemplary patient care. The centre focuses on the advancement, detection and treatment of neurological diseases and specializes in movement disorders, dementias, stroke, spinal cord injury, blinding eye diseases, epilepsy and cancer-related conditions.

For more information please visit www.krembil.com
About University Health Network
University Health Network consists of Toronto General, Toronto Western and Princess Margaret Hospitals. The scope of research and complexity of cases at University Health Network has made it a national and international source for discovery, education and patient care. It has the largest hospital-based research program in Canada, with major research in cardiology, transplantation, neurosciences, oncology, surgical innovation, infectious diseases, and genomic medicine. University Health Network is a research hospital affiliated with the University of Toronto.

For more information please visit www.uhn.ca

For more information, please contact:
Nadia Daniell-Colarossi
Krembil Neuroscience Centre
Toronto Western Hospital
Tel: 416-603-5294
nadia.daniell-colarossi@uhn.on.ca

Nadia Daniell-Colarossi | EurekAlert!
Further information:
http://www.uhn.on.ca

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>