Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Canadian scientist develops world's most advanced drug to protect the brain after a stroke

01.03.2012
Scientists at the Toronto Western Research Institute (TWRI), Krembil Neuroscience Center, have developed a drug that protects the brain against the damaging effects of a stroke in a lab setting. This drug has been in development for a few years.

At this point, it has reached the most advanced stage of development among drugs created to reduce the brain's vulnerability to stroke damage (termed a "neuroprotectant").

Over 1000 attempts to develop such drugs by scientists worldwide have failed to be translated to a stage where they can be used in humans, leaving a major unmet need for stroke treatment. The drug developed by the TWRI team is the first to achieve a neuroprotective effect in the complex brain of primates, in settings that simulate those of human strokes. ischemic stroke.

The study, "Treatment of Stroke with a PSD95 inhibitor in the Gyrencephalic Primate Brain", published online today in Nature, shows how the drug, called a "PSD95 inhibitor" prevents brain cell death and preserves brain function when administered after a stroke has occurred.

"We are closer to having a treatment for stroke than we have ever been before," said Dr. Michael Tymianski, TWRI Senior Scientist and the study's lead author. "Stroke is the leading cause of death and disability worldwide and we believe that we now have a way to dramatically reduce its damaging effects."

During a stroke, regions of the brain are deprived of blood and oxygen. This causes a complex sequence of chemical reactions in the brain, which can result in neurological impairment or death. The PSD95 inhibitor published by the Toronto team acts to protect the brain by preventing the occurrence of these neurotoxic reactions.

The study used cynomolgus macaques, which bear genetic, anatomic and behaviour similarities to humans, as an ideal model to determine if this therapy would be beneficial in patients.

Animals that were treated with the PSD95 inhibitor after a stroke had greatly reduced brain damage and this translated to a preservation of neurological function. These improvements were observed in several scenarios that simulated human strokes. Specifically, when the treatment was given either early, or even at 3 hours, after the stroke onset, the animals exhibited remarkable recoveries. Benefits were also observed when the drug therapy was combined with conventional therapies (aimed at re-opening blocked arteries to the brain). Beneficial effects were observed even in a time window when conventional therapies on their own no longer have an effect.

"There is hope that this new drug could be used in conjunction with other treatments, such as thrombolytic agents or other means to restore blood flow to the brain, in order to further reduce the impact of stroke on patients," said Dr. Tymianski. "These findings are extremely exciting and our next step is to confirm these results in a clinical trial."

Dr. Michael Tymianski holds a Tier 1 Canada Research Chair in Translational Stroke Research. He is a neurosurgeon at Toronto Western Hospital, the Medical Director of the Neurovascular Therapeutics Program and the Interim Head of the Division of Neurosurgery at the University Health Network. He is also a Professor in the Department of Surgery and a member of the Institute of Medical Science at the University of Toronto.

About Krembil Neuroscience Centre

The Krembil Neuroscience Centre (KNC), located at Toronto Western Hospital, is home to one of the largest combined clinical and research neurological facilities in North America. Since opening in 2001, KNC has been recognized as a world leader through its research achievements, education and exemplary patient care. The centre focuses on the advancement, detection and treatment of neurological diseases and specializes in movement disorders, dementias, stroke, spinal cord injury, blinding eye diseases, epilepsy and cancer-related conditions.

For more information please visit www.krembil.com
About University Health Network
University Health Network consists of Toronto General, Toronto Western and Princess Margaret Hospitals. The scope of research and complexity of cases at University Health Network has made it a national and international source for discovery, education and patient care. It has the largest hospital-based research program in Canada, with major research in cardiology, transplantation, neurosciences, oncology, surgical innovation, infectious diseases, and genomic medicine. University Health Network is a research hospital affiliated with the University of Toronto.

For more information please visit www.uhn.ca

For more information, please contact:
Nadia Daniell-Colarossi
Krembil Neuroscience Centre
Toronto Western Hospital
Tel: 416-603-5294
nadia.daniell-colarossi@uhn.on.ca

Nadia Daniell-Colarossi | EurekAlert!
Further information:
http://www.uhn.on.ca

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>