Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can Antibiotics Cause Autoimmunity?

02.04.2014

Antibiotics being explored for the treatment of cystic fibrosis and muscular dystrophy have the potential to trigger autoimmune disease.

The code for every gene includes a message at the end of it that signals the translation machinery to stop. Some diseases, such as cystic fibrosis and Duchenne muscular dystrophy, can result from mutations that insert this stop signal into the middle of an essential gene, causing the resulting protein to be truncated.

Some antibiotics cause the cell’s translation machinery to ignore the stop codons and are therefore being explored as a potential therapy for these diseases. But new research reported online in Proceedings of the National Academy of Sciences (the week of March 31st) shows that this approach could come with the price of triggering autoimmune disease.

“It’s worth thinking about this as a potential mechanism for autoimmunity,” says co-lead investigator, Laurence Eisenlohr, Ph.D., a professor in the department of Microbiology and Immunology at Thomas Jefferson University.

Autoimmune diseases such as Crohn’s disease, eczema, or lupus are caused by an immune system that attacks normal components of various tissues of the body. The immune system attacks these normal tissues just as it would attack tissue infected by a bacteria or virus. What causes the immune system to malfunction in some people but not others, however, has been a puzzle. “Often, the trigger happens years before the disease has been diagnosed,” says Dr. Eisenlohr.

The researchers looked at a class of antibiotics that includes gentamicin because these antibiotics have the unique property of inducing cells to read through stop codons in the genetic code – producing a longer protein product. This mechanism can help save the translation of mutated genes whose processing is interrupted by aberrant stop codons, such as in cystic fibrosis. However, when cellular machinery reads through normal stop codons, it could create abnormally elongated proteins in the cell. Pieces of these abnormal proteins may be presented to the immune system as a part of normal protein processing, where they could be detected by the immune system. At least, that’s the theory.

To test this theory, Eisenlohr’s team, in collaboration with a translation biology group at the University of Utah led by Michael Howard, Ph.D., used a gene that they knew would get presented to the immune system and added a stop codon in the middle of it. They then inserted this gene into a mammalian cell line. Because the stop codon truncates the gene, normal cells did not produce the protein. However, when the researchers treated the cells with gentamicin, they began to detect the protein on the surface of cells.

While a very low number of these proteins were produced – too little to detect by normal biochemical tests – the T cells of the immune system are sensitive enough to pick up these miniscule amounts. Indeed, the group showed that the immune cells could detect the protein produced by gentamicin-treated cells, even at low quantities.

To test whether this process was active even in normal cells that weren’t expressing an experimental gene, first author Elliot Goodenough exposed the HeLa human cell line to gentamicin and then searched for novel peptides presented on the surface of the cells. He identified 17 peptides that hadn’t been characterized before in cells treated with gentamicin and showed that the peptides were presentable to the immune system. “The results suggest that gentamicin can cause cells to display novel protein fragments to the immune system,” says Goodenough. In other words, “what may be garbage biologically may be important immunologically,” says Eisenlohr.

However, presenting an antigen to the immune system does not guarantee that it will activate the kind of immune response that initiates autoimmunity. But because gentamicin is usually used to treat infections, “all of the right conditions are in place to potentially initiate autoimmunity,” says Eisenlohr. The inflammation associated with bacterial diseases gives a signal to immune cells that the peptides they encounter are dangerous. So even as gentamicin fights the bacteria causing the infection, it also causes normal cells to produce abnormal proteins that are presented to the immune system and have a potential of initiating an autoimmune reaction.

“A number of autoimmune diseases are thought to be triggered by infections,” says Eisenlohr. “The results of this study suggest that certain antibiotics used to treat those infections may also contribute to that trigger.”
The next steps, says Eisenlohr, could be to look at population data to see whether use of gentamicin correlates with higher rates of autoimmune diseases, as well as testing whether the peptides generated during gentamicin treatment actually do cause autoimmunity in a mouse model of the disease.

This work was supported by National Institutes of Health Grants R01AI039501 (to L.C.E.), R01AI100561 (to L.C.E.), and R21NS083884 (to M.T.H.); and Science Foundation Ireland Grant 12/IP/1492 (to J.F.A.).The authors declare no conflicts of interest.

For more information, contact Edyta Zielinska, (215) 955-5291, edyta.zielinska@jefferson.edu.

###


About Jefferson
Thomas Jefferson University (TJU), the largest freestanding academic medical center in Philadelphia, is nationally renowned for medical and health sciences education and innovative research. Founded in 1824, TJU includes Jefferson Medical College (JMC), one of the largest private medical schools in the country and ranked among the nation’s best medical schools by U.S. News & World Report, and the Jefferson Schools of Nursing, Pharmacy, Health Professions, Population Health and the Graduate School of Biomedical Sciences. Jefferson University Physicians is TJU’s multi-specialty physician practice consisting of the full-time faculty of JMC. Thomas Jefferson University partners with its clinical affiliate, Thomas Jefferson University Hospitals.

Article reference: E Goodenough et al., “Cryptic Q:1 MHC class I-binding peptides are revealed by
aminoglycoside-induced stop codon read-through into the 3’ UTR,” PNAS, doi: 10.1073/pnas. 1402670111, 2014.

Edyta Zielinska | newswise
Further information:
http://www.Jefferson.edu

Further reports about: antibiotics autoimmune autoimmunity diseases gentamicin immune infections mechanism peptides processing proteins

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>