Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Caloric moderation can reverse link between low birth weight and obesity, early study indicates

03.04.2012
Babies who are born small have a tendency to put on weight during childhood and adolescence if allowed free access to calories. However, a new animal model study at UCLA found when small babies were placed on a diet of moderately regulated calories during infancy, the propensity of becoming obese decreased.

Because this is an early study, UCLA researchers do not recommend that mothers of low-birth weight infants start restricting their child's nutrition and suggest they consult with their child's pediatrician regarding any feeding questions.

Previous studies have shown that growth restriction before birth may cause lasting changes of genes in certain insulin-sensitive organs like the pancreas, liver and skeletal muscle. Before birth, these changes may help the malnourished fetus use all available nutrients. However, after birth these changes may contribute to health problems such as obesity and diabetes.

"This study shows that if we match the level of caloric consumption after birth to the same level that the growth-restricted baby received in the womb, it results in a lean body type. However, if there is a mismatch where the baby is growth-restricted at birth but exposed to plenty of calories after birth, then that leads to obesity," said the lead author, Dr. Sherin Devaskar, professor of pediatrics and executive chair of the department of pediatrics at Mattel Children's Hospital UCLA. "While many trials that include exercise and various drug therapies have tried to reverse the tendency of low birth weight babies becoming obese, we have shown that a dietary intervention during early life can have long lasting effects into childhood, adolescence and adult life."

The study appears in the June issue of the journal Diabetes and is currently available online.

About 10 percent of babies in the United States are born small, defined as less than the 10th percentile by weight for a given gestation period, said the study's first author, Dr. Meena Garg, professor of pediatrics and a neonatologist and medical director of the neonatal intensive care unit at Mattel Children's Hospital UCLA. She added that some organizations define low birth weight as less than 2,500 grams or 5 pounds, 5 ounces at term.

Low birth weight can be caused by malnutrition due to a mother's homelessness or hunger or her desire not to gain too much weight during pregnancy. Additional causes include illness or infection, a reduction in placental blood, smoking or use of alcohol or drugs during pregnancy.

To conduct the study, researchers used rodent animal models and simulated a reduced calorie scenario during pregnancy. The results showed that low-birth weight offspring exposed to moderately tempered caloric intake during infancy and childhood resulted in lean and physically active adults related to high energy expenditure, as opposed to unrestricted intake of calories, which resulted in inactive and obese adults due to reduced energy expenditure. The authors concluded that early life dietary interventions have far reaching effects on the adult state.

Future studies will follow this study over the stages of aging to see if early regulation of calorie intake reverses diabetes and obesity while aging.

"This is an early pre-clinical trial that first needs to be tested in clinical trials before any form of guidelines can be developed," Devaskar said. "More importantly, we must make sure that control of caloric intake during infancy and childhood does not have any unintended side effects before taking on clinical trials. More research is required to ensure that these metabolic advantages will persist later in life."

The study was funded by the National Institute of Child Health and Human Development.

In addition to Devaskar and Garg, the study was conducted by a team of UCLA researchers including Manikkavasagar Thamotharan, Yun Dai, Shanthie Thamotharan, Bo Chul Shin and David Stout.

The authors have no financial ties to disclose.

Amy Albin | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>