Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


BYU engineers conceive disc replacement to treat chronic low back pain

Technology licensed by BYU to Utah-based Crocker Spinal Technologies
In between the vertebrae of the human spine are 23 Oreo-sized, cartilage-filled discs that hold the vertebrae together and allow for spine movement.

While the discs are critical for movement, they can become the source of back pain when they degenerate or herniate – a major health problem that affects 85% of Americans and drains the U.S. economy to the tune of $100 billion every year.

A new biomedical device to surgically treat chronic back pain – an artificial spinal disc that duplicates the natural motion of the spine – has been licensed from Brigham Young University to a Utah-based company.

The artificial disc was conceived by engineering professors Anton Bowden and Larry Howell and BYU alum Peter Halverson. It will be developed to market by Crocker Spinal Technologies, a company founded by BYU President’s Leadership Council member Gary Crocker and headed by BYU MBA graduate David Hawkes.

The BYU researchers report on the mechanism’s ability to facilitate natural spine movement in a study published in a forthcoming issue of the International Journal of Spine Surgery.

“Low back pain has been described as the most severe pain you can experience that won’t kill you,” said Bowden, a BYU biomechanics and spine expert. “This device has the potential to alleviate that pain and restore the natural motion of the spine – something current procedures can’t replicate.”

Currently, the most common surgical treatment for chronic low back pain is spinal fusion surgery. Fusion replaces the degenerative disc with bone in order to fuse the adjacent segments to prevent motion-generated pain.

Unfortunately, patient satisfaction with fusion surgery is less than 50 percent.

The solution researched by the BYU team, and now being developed by Crocker Spinal Technologies, consists of a compliant mechanism that facilitates natural spine movement and is aimed at restoring the function of a healthy spinal disc.

Compliant mechanisms are jointless, elastic structures that use flexibility to create movement. Examples include tweezers, fingernail clippers or a bow-and-arrow. Howell is a leading expert in compliant mechanism research.

“To mimic the response of the spine is very difficult because of the constrained space and the sophistication of the spine and its parts,” Howell said. “A compliant mechanism is more human-like, more natural, and the one we’ve created behaves like a healthy disc.”

Under Howell’s and Bowden’s tutelage, BYU student-engineers built prototypes, machine tested the disc and then tested the device in cadaveric spines. The test results show the artificial replacement disc behaves similarly to a healthy human disc.

“Putting it in a cadaver and having it do what we engineered it do was really rewarding,” Howell said. “It has a lot of promise for eventually making a difference in a lot of people’s lives.”

Halverson, who was lead author on the International Journal of Spine Surgery study, has since earned his Ph.D. from BYU and taken a position at Crocker Spinal Technologies, which will likely begin international sales distribution as early as next year.

“Fusion, which is the current standard of care for back pain, leaves a lot to be desired,” said Hawkes, president of Crocker Spinal Technologies. “Disc replacement is an emerging alternative to fusion that has the potential to make a significant difference in the lives of millions.

“BYU’s innovation is a radical step forward in the advancement of disc replacement technology. It is exciting to be a part of this effort and a delight to work with such talented, wonderful people,” he said.

Todd Hollingshead | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>