Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BYU engineers conceive disc replacement to treat chronic low back pain

13.06.2012
Technology licensed by BYU to Utah-based Crocker Spinal Technologies
In between the vertebrae of the human spine are 23 Oreo-sized, cartilage-filled discs that hold the vertebrae together and allow for spine movement.

While the discs are critical for movement, they can become the source of back pain when they degenerate or herniate – a major health problem that affects 85% of Americans and drains the U.S. economy to the tune of $100 billion every year.

A new biomedical device to surgically treat chronic back pain – an artificial spinal disc that duplicates the natural motion of the spine – has been licensed from Brigham Young University to a Utah-based company.

The artificial disc was conceived by engineering professors Anton Bowden and Larry Howell and BYU alum Peter Halverson. It will be developed to market by Crocker Spinal Technologies, a company founded by BYU President’s Leadership Council member Gary Crocker and headed by BYU MBA graduate David Hawkes.

The BYU researchers report on the mechanism’s ability to facilitate natural spine movement in a study published in a forthcoming issue of the International Journal of Spine Surgery.

“Low back pain has been described as the most severe pain you can experience that won’t kill you,” said Bowden, a BYU biomechanics and spine expert. “This device has the potential to alleviate that pain and restore the natural motion of the spine – something current procedures can’t replicate.”

Currently, the most common surgical treatment for chronic low back pain is spinal fusion surgery. Fusion replaces the degenerative disc with bone in order to fuse the adjacent segments to prevent motion-generated pain.

Unfortunately, patient satisfaction with fusion surgery is less than 50 percent.

The solution researched by the BYU team, and now being developed by Crocker Spinal Technologies, consists of a compliant mechanism that facilitates natural spine movement and is aimed at restoring the function of a healthy spinal disc.

Compliant mechanisms are jointless, elastic structures that use flexibility to create movement. Examples include tweezers, fingernail clippers or a bow-and-arrow. Howell is a leading expert in compliant mechanism research.

“To mimic the response of the spine is very difficult because of the constrained space and the sophistication of the spine and its parts,” Howell said. “A compliant mechanism is more human-like, more natural, and the one we’ve created behaves like a healthy disc.”

Under Howell’s and Bowden’s tutelage, BYU student-engineers built prototypes, machine tested the disc and then tested the device in cadaveric spines. The test results show the artificial replacement disc behaves similarly to a healthy human disc.

“Putting it in a cadaver and having it do what we engineered it do was really rewarding,” Howell said. “It has a lot of promise for eventually making a difference in a lot of people’s lives.”

Halverson, who was lead author on the International Journal of Spine Surgery study, has since earned his Ph.D. from BYU and taken a position at Crocker Spinal Technologies, which will likely begin international sales distribution as early as next year.

“Fusion, which is the current standard of care for back pain, leaves a lot to be desired,” said Hawkes, president of Crocker Spinal Technologies. “Disc replacement is an emerging alternative to fusion that has the potential to make a significant difference in the lives of millions.

“BYU’s innovation is a radical step forward in the advancement of disc replacement technology. It is exciting to be a part of this effort and a delight to work with such talented, wonderful people,” he said.

Todd Hollingshead | EurekAlert!
Further information:
http://www.byu.edu
http://news.byu.edu/archive12-jun-spine.aspx

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>