Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BYU engineers conceive disc replacement to treat chronic low back pain

13.06.2012
Technology licensed by BYU to Utah-based Crocker Spinal Technologies
In between the vertebrae of the human spine are 23 Oreo-sized, cartilage-filled discs that hold the vertebrae together and allow for spine movement.

While the discs are critical for movement, they can become the source of back pain when they degenerate or herniate – a major health problem that affects 85% of Americans and drains the U.S. economy to the tune of $100 billion every year.

A new biomedical device to surgically treat chronic back pain – an artificial spinal disc that duplicates the natural motion of the spine – has been licensed from Brigham Young University to a Utah-based company.

The artificial disc was conceived by engineering professors Anton Bowden and Larry Howell and BYU alum Peter Halverson. It will be developed to market by Crocker Spinal Technologies, a company founded by BYU President’s Leadership Council member Gary Crocker and headed by BYU MBA graduate David Hawkes.

The BYU researchers report on the mechanism’s ability to facilitate natural spine movement in a study published in a forthcoming issue of the International Journal of Spine Surgery.

“Low back pain has been described as the most severe pain you can experience that won’t kill you,” said Bowden, a BYU biomechanics and spine expert. “This device has the potential to alleviate that pain and restore the natural motion of the spine – something current procedures can’t replicate.”

Currently, the most common surgical treatment for chronic low back pain is spinal fusion surgery. Fusion replaces the degenerative disc with bone in order to fuse the adjacent segments to prevent motion-generated pain.

Unfortunately, patient satisfaction with fusion surgery is less than 50 percent.

The solution researched by the BYU team, and now being developed by Crocker Spinal Technologies, consists of a compliant mechanism that facilitates natural spine movement and is aimed at restoring the function of a healthy spinal disc.

Compliant mechanisms are jointless, elastic structures that use flexibility to create movement. Examples include tweezers, fingernail clippers or a bow-and-arrow. Howell is a leading expert in compliant mechanism research.

“To mimic the response of the spine is very difficult because of the constrained space and the sophistication of the spine and its parts,” Howell said. “A compliant mechanism is more human-like, more natural, and the one we’ve created behaves like a healthy disc.”

Under Howell’s and Bowden’s tutelage, BYU student-engineers built prototypes, machine tested the disc and then tested the device in cadaveric spines. The test results show the artificial replacement disc behaves similarly to a healthy human disc.

“Putting it in a cadaver and having it do what we engineered it do was really rewarding,” Howell said. “It has a lot of promise for eventually making a difference in a lot of people’s lives.”

Halverson, who was lead author on the International Journal of Spine Surgery study, has since earned his Ph.D. from BYU and taken a position at Crocker Spinal Technologies, which will likely begin international sales distribution as early as next year.

“Fusion, which is the current standard of care for back pain, leaves a lot to be desired,” said Hawkes, president of Crocker Spinal Technologies. “Disc replacement is an emerging alternative to fusion that has the potential to make a significant difference in the lives of millions.

“BYU’s innovation is a radical step forward in the advancement of disc replacement technology. It is exciting to be a part of this effort and a delight to work with such talented, wonderful people,” he said.

Todd Hollingshead | EurekAlert!
Further information:
http://www.byu.edu
http://news.byu.edu/archive12-jun-spine.aspx

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>