Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BYU engineers conceive disc replacement to treat chronic low back pain

13.06.2012
Technology licensed by BYU to Utah-based Crocker Spinal Technologies
In between the vertebrae of the human spine are 23 Oreo-sized, cartilage-filled discs that hold the vertebrae together and allow for spine movement.

While the discs are critical for movement, they can become the source of back pain when they degenerate or herniate – a major health problem that affects 85% of Americans and drains the U.S. economy to the tune of $100 billion every year.

A new biomedical device to surgically treat chronic back pain – an artificial spinal disc that duplicates the natural motion of the spine – has been licensed from Brigham Young University to a Utah-based company.

The artificial disc was conceived by engineering professors Anton Bowden and Larry Howell and BYU alum Peter Halverson. It will be developed to market by Crocker Spinal Technologies, a company founded by BYU President’s Leadership Council member Gary Crocker and headed by BYU MBA graduate David Hawkes.

The BYU researchers report on the mechanism’s ability to facilitate natural spine movement in a study published in a forthcoming issue of the International Journal of Spine Surgery.

“Low back pain has been described as the most severe pain you can experience that won’t kill you,” said Bowden, a BYU biomechanics and spine expert. “This device has the potential to alleviate that pain and restore the natural motion of the spine – something current procedures can’t replicate.”

Currently, the most common surgical treatment for chronic low back pain is spinal fusion surgery. Fusion replaces the degenerative disc with bone in order to fuse the adjacent segments to prevent motion-generated pain.

Unfortunately, patient satisfaction with fusion surgery is less than 50 percent.

The solution researched by the BYU team, and now being developed by Crocker Spinal Technologies, consists of a compliant mechanism that facilitates natural spine movement and is aimed at restoring the function of a healthy spinal disc.

Compliant mechanisms are jointless, elastic structures that use flexibility to create movement. Examples include tweezers, fingernail clippers or a bow-and-arrow. Howell is a leading expert in compliant mechanism research.

“To mimic the response of the spine is very difficult because of the constrained space and the sophistication of the spine and its parts,” Howell said. “A compliant mechanism is more human-like, more natural, and the one we’ve created behaves like a healthy disc.”

Under Howell’s and Bowden’s tutelage, BYU student-engineers built prototypes, machine tested the disc and then tested the device in cadaveric spines. The test results show the artificial replacement disc behaves similarly to a healthy human disc.

“Putting it in a cadaver and having it do what we engineered it do was really rewarding,” Howell said. “It has a lot of promise for eventually making a difference in a lot of people’s lives.”

Halverson, who was lead author on the International Journal of Spine Surgery study, has since earned his Ph.D. from BYU and taken a position at Crocker Spinal Technologies, which will likely begin international sales distribution as early as next year.

“Fusion, which is the current standard of care for back pain, leaves a lot to be desired,” said Hawkes, president of Crocker Spinal Technologies. “Disc replacement is an emerging alternative to fusion that has the potential to make a significant difference in the lives of millions.

“BYU’s innovation is a radical step forward in the advancement of disc replacement technology. It is exciting to be a part of this effort and a delight to work with such talented, wonderful people,” he said.

Todd Hollingshead | EurekAlert!
Further information:
http://www.byu.edu
http://news.byu.edu/archive12-jun-spine.aspx

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>