Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BWH researchers develop a vaccine prototype stronger than traditional vaccines

29.11.2011
Brigham and Women's Hospital (BWH) researchers have created a vaccine that is more potent than traditional vaccines available today. The glycoconjugate vaccine prototype is 100 times more effective than traditional glycoconjugate vaccines. Their work is published in the December 2011 issue of Nature Medicine.

A glycoconjugate vaccine is comprised of covalently bound carbohydrate and protein molecules, and is the standard design for many vaccines used to protect against common diseases such as pneumonia and meningitis.

Researchers designed the vaccine prototype after discovering that immune cells, called T-cells, can recognize a vaccine's carbohydrates, and from that recognition elicit an immune response. This discovery challenges popular assumptions that immune cells only recognize the protein portion of glycoconjugate vaccines.

Proof that T-cells recognize carbohydrates came when researchers immunized mice with different types of glycoconjugate vaccines against the bacteria, group B Streptococcus. One group was immunized with vaccines containing different proteins. Another group was immunized with vaccines with the same proteins. For both groups, the carbohydrate chain in the vaccines was the same.

Researchers saw that mice given the vaccines with different proteins had just as good an immune response as those given vaccines with the same proteins-the variability in proteins did not change immune response. This told researchers that T-cells were recognizing carbohydrates to generate a consistent immune response. They further investigated the mechanisms responsible for how carbohydrate-containing glycoconjugate vaccines activate protective immunity to a bacterial infection.

"One thing that is tremendously novel here is that we were able to find T-cells within a mouse after immunization with a glycoconjugate [vaccine] that just recognized carbohydrates," said Dennis L. Kasper, MD, director of BWH's Channing Laboratory. "So these may be the first true carbohydrate-specific T-cells found."

The understanding that it was not only proteins, but also carbohydrates that were being recognized by cells led researchers to design a vaccine that yielded many carbohydrate particles when processed by the immune system-in turn creating a vaccine that generated a stronger immune response. Researchers believe that the more effective vaccine prototype they designed may one day assist in protecting high-risk populations susceptible of disease.

"For example, pneumococcal conjugate vaccines are good in children, but are not effective in protecting the elderly," explained Kasper. So we are hopeful that by designing vaccines like this, you'll make better vaccines that will be effective in all the at-risk populations."

Fikri Avci, PhD, lead study author and instructor in the Department of Medicine at BWH and Harvard Medical School adds that the findings on how the body's immune cells interact with carbohydrates will also lead to more effective vaccines in the future.

"Carbohydrates are among the most abundant and structurally diverse molecules in nature," said Avci. "They are extremely important in many biological functions. A better understanding of carbohydrate interaction is crucial. We are hoping that our findings will provide a framework for production of new-generation therapeutics and preventive medicines not only against bacterial infections, but also for cancer and viral diseases."

The research was supported by grants from the United States National Institutes of Health.

Marjorie Montemayor-Quellenberg | EurekAlert!
Further information:
http://www.brighamandwomens.org/

More articles from Health and Medicine:

nachricht Improving memory with magnets
28.03.2017 | McGill University

nachricht Graphene-based neural probes probe brain activity in high resolution
28.03.2017 | Graphene Flagship

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>