Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BWH researchers develop a vaccine prototype stronger than traditional vaccines

29.11.2011
Brigham and Women's Hospital (BWH) researchers have created a vaccine that is more potent than traditional vaccines available today. The glycoconjugate vaccine prototype is 100 times more effective than traditional glycoconjugate vaccines. Their work is published in the December 2011 issue of Nature Medicine.

A glycoconjugate vaccine is comprised of covalently bound carbohydrate and protein molecules, and is the standard design for many vaccines used to protect against common diseases such as pneumonia and meningitis.

Researchers designed the vaccine prototype after discovering that immune cells, called T-cells, can recognize a vaccine's carbohydrates, and from that recognition elicit an immune response. This discovery challenges popular assumptions that immune cells only recognize the protein portion of glycoconjugate vaccines.

Proof that T-cells recognize carbohydrates came when researchers immunized mice with different types of glycoconjugate vaccines against the bacteria, group B Streptococcus. One group was immunized with vaccines containing different proteins. Another group was immunized with vaccines with the same proteins. For both groups, the carbohydrate chain in the vaccines was the same.

Researchers saw that mice given the vaccines with different proteins had just as good an immune response as those given vaccines with the same proteins-the variability in proteins did not change immune response. This told researchers that T-cells were recognizing carbohydrates to generate a consistent immune response. They further investigated the mechanisms responsible for how carbohydrate-containing glycoconjugate vaccines activate protective immunity to a bacterial infection.

"One thing that is tremendously novel here is that we were able to find T-cells within a mouse after immunization with a glycoconjugate [vaccine] that just recognized carbohydrates," said Dennis L. Kasper, MD, director of BWH's Channing Laboratory. "So these may be the first true carbohydrate-specific T-cells found."

The understanding that it was not only proteins, but also carbohydrates that were being recognized by cells led researchers to design a vaccine that yielded many carbohydrate particles when processed by the immune system-in turn creating a vaccine that generated a stronger immune response. Researchers believe that the more effective vaccine prototype they designed may one day assist in protecting high-risk populations susceptible of disease.

"For example, pneumococcal conjugate vaccines are good in children, but are not effective in protecting the elderly," explained Kasper. So we are hopeful that by designing vaccines like this, you'll make better vaccines that will be effective in all the at-risk populations."

Fikri Avci, PhD, lead study author and instructor in the Department of Medicine at BWH and Harvard Medical School adds that the findings on how the body's immune cells interact with carbohydrates will also lead to more effective vaccines in the future.

"Carbohydrates are among the most abundant and structurally diverse molecules in nature," said Avci. "They are extremely important in many biological functions. A better understanding of carbohydrate interaction is crucial. We are hoping that our findings will provide a framework for production of new-generation therapeutics and preventive medicines not only against bacterial infections, but also for cancer and viral diseases."

The research was supported by grants from the United States National Institutes of Health.

Marjorie Montemayor-Quellenberg | EurekAlert!
Further information:
http://www.brighamandwomens.org/

More articles from Health and Medicine:

nachricht Speed data for the brain’s navigation system
06.12.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>