Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Building bone from cartilage

15.02.2012
Orthopaedic researchers take the road less traveled

A person has a tumor removed from her femur. A soldier is struck by an improvised explosive device and loses a portion of his tibia. A child undergoes chemotherapy for osteosarcoma but part of the bone dies as a result.

Every year, millions of Americans sustain fractures that don't heal or lose bone that isn't successfully grafted. But a study presented at the Orthopaedic Research Society (ORS) 2012 Annual Meeting in San Francisco offers new hope for those who sustain these traumas.

Orthopaedic researchers with the University of California, San Francisco (UCSF), Orthopaedic Trauma Institute, have found a very promising, novel way to regenerate bone. "Cartilage graft induces bone that actually integrates with the host bone and vascularizes it," said Ralph S. Marcucio, PhD, Associate Professor, UCSF School of Medicine.

Cartilage graft is very different than the current methods used for bone grafting—autograft bone (a person's own bone) or allograft materials (donor bone). For various reasons, these two grafting techniques can result in poor graft integration and osteonecrosis.

"With millions of bone grafting procedures performed every year in just the United States, developing improved technologies could directly enhance patient care and clinical outcomes," Dr. Marcucio said.

Chelsea S. Bahney, PhD, Postdoctoral Scholar, UCSF School of Medicine, concedes their approach is less orthodox. "It is not the pathway that most people think about, but it made a lot more sense to follow the normal developmental mechanism."

"This cartilage is naturally bioactive. It makes factors that help induce vascularization and bone formation," added Dr. Bahney. "When people use a bone graft, it is often dead bone which requires something exogenous to be added to it or some property of the matrix in the graft."

Through a process called endochondral ossification, cartilage grafts produce new tissue that is very similar to the person's own bone. Without additional properties to it, the researchers found the cartilage graft integrated well and was fully vascularized.

"We're just taking a very similar cartilage that can induce bone formation, putting it into a bone defect and letting it just do its thing," Dr. Marcucio said.

In the study, the researchers chose a non-stabilized tibial fracture callus as a source of a cartilage graft. "Healing of the transplanted cartilage grafts supported our hypothesis by producing a well-vascularized bone that integrated well with the host," Dr. Bahney said.

"A cartilage graft could offer a promising alternative approach for stimulating bone regeneration," Dr. Marcucio said. "Future work will focus on developing a translatable technology suitable for repairing bone through a cartilage intermediate at a clinical level."

About the Orthopaedic Research Society (ORS):

The Orthopaedic Research Society (ORS) is the pre-eminent organization for the advancement of musculoskeletal research. It seeks to transform the future through global multidisciplinary collaborations—focusing on the complex challenges of orthopaedic treatment. The ORS advances the global orthopaedic research agenda through excellence in research, education, collaboration, communication and advocacy. The ORS Annual Meeting and publication of the Journal of Orthopaedic Research provide vital forums for the musculoskeletal community to communicate the current state of orthopaedic research.

Annie Hayashi | EurekAlert!
Further information:
http://www.ors.org

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>