Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BSE pathogens can be transmitted by air

14.01.2011
Airborne prions are also infectious and can induce mad cow disease or Creutzfeldt-Jakob disorder. This is the surprising conclusion of researchers at the University of Zurich, the University Hospital Zurich and the University of Tübingen. They recommend precautionary measures for scientific labs, slaughterhouses and animal feed plants.

The prion is the infectious agent that caused the epidemic of mad cow disease, also termed bovine spongiform encephalopathy (BSE), and claimed the life of over 280,000 cows in the past decades. Transmission of BSE to humans, e.g. by ingesting food derived from BSE-infected cows, causes variant Creutzfeldt-Jakob disease which is characterized by a progressive and invariably lethal breakdown of brain cells.

It is known that prions can be transmitted through contaminated surgical instruments and, more rarely, through blood transfusions. The consumption of food products made from BSE-infected cows can also induce the disease that is responsible for the death of almost 300 people. However, prions are not generally considered to be airborne – in contrast to many viruses including influenza and chicken pox.

A high rate of infection

Prof. Adriano Aguzzi's team of scientists at the universities of Zurich and Tübingen and the University Hospital Zurich have now challenged the notion that airborne prions are innocuous. In a study, mice were housed in special inhalation chambers and exposed to aerosols containing prions. Unexpectedly, it was found that inhalation of prion-tainted aerosols induced disease with frightening efficiency. Just a single minute of exposure to the aerosols was sufficient to infect 100% of the mice, according to Prof. Aguzzi who published the findings in the Open-Access-Journal "PLoS Pathogens." The longer exposure lasted, the shorter the time of incubation in the recipient mice and the sooner clinical signs of a prion disease occurred. Prof. Aguzzi says the findings are entirely unexpected and appear to contradict the widely held view that prions are not airborne.

The prions appear to transfer from the airways and colonize the brain directly because immune system defects – known to prevent the passage of prions from the digestive tract to the brain – did not prevent infection.

Protecting humans and animals

Precautionary measures against prion infections in scientific laboratories, slaughterhouses and animal feed plants do not typically include stringent protection against aerosols. The new findings suggest that it may be advisable to reconsider regulations in light of a possible airborne transmission of prions. Prof. Aguzzi recommends precautionary measures to minimize the risk of a prion infection in humans and animals. He does, however, emphasize that the findings stem from the production of aerosols in laboratory conditions and that Creutzfeldt-Jakob patients do not exhale prions.

Literature:
Haybaeck Johannes, Heikenwalder Mathias, Klevenz Britta, Schwarz Petra, Margalith Ilan, Bridel Claire, Mertz Kirsten, Zirdum Elizabeta, Petsch Benjamin, Fuchs Thomas J., Stitz Lothar and Aguzzi Adriano. (2011): Aerosols Transmit Prions to Immunocompetent and Immunodeficient Mice. PLoS Pathog 7(1): e1001257. doi:10.1371/journal.ppat.1001257
Contact:
Prof. Adriano Aguzzi
Institute of Neuropathology
University Hospital Zurich
Tel. +41 44 255 21 07
E-mail adriano.aguzzi@usz.ch

Beat Müller | idw
Further information:
http://www.usz.ch

More articles from Health and Medicine:

nachricht Cystic fibrosis alters the structure of mucus in airways
28.06.2017 | University of Iowa Health Care

nachricht Mice provide insight into genetics of autism spectrum disorders
28.06.2017 | University of California - Davis

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>