Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bringing leukemia out of hiding

19.04.2010
Two new strategies target a deadly cancer that eludes conventional chemotherapy

Acute myeloid leukemia (AML) is the most common form of adult leukemia, and with an estimated five-year survival rate of 20%, the long-term prognosis for many patients is relatively grim.

“Current treatments for AML can initially reduce the number of AML cells to undetectable levels, a state referred to as ‘complete remission’,” says Fumihiko Ishikawa of the RIKEN Research Center for Allergy and Immunology in Yokohama. “Unfortunately, in a substantial proportion of these patients, AML eventually comes back—and many that relapse succumb to the disease.” The need for an improved arsenal to fight AML has guided much of Ishikawa’s work, and two recently published articles from his team present promising strategies for tackling this dreaded cancer.

AML originates in bone marrow, and relapse is initiated from small pockets of chemotherapy-resistant ‘leukemia stem cells’ (LSCs) within the marrow, which can be identified by their distinctive profile of cell-surface markers. In an effort to identify other features of LSCs that might offer useful therapeutic targets, Ishikawa, Yoriko Saito and team performed a thorough comparative analysis between LSCs and normal blood stem cells to identify genes with functional characteristics pertinent to cancerous growth whose expression is specifically elevated in LSCs1.

... more about:
»AML »Allergy »LSCs »RIKEN »stem cells

Their analysis revealed two candidate cell-surface proteins, CD25 and CD32; both of these are commonly overexpressed in chemotherapy-resistant LSCs, but can also be therapeutically targeted without negatively affecting blood cell development from healthy hematopoietic stem cells, making them potentially promising targets for thwarting relapse.

In parallel, Ishikawa and colleagues have also explored methods for boosting the efficiency of chemotherapy. Standard AML drugs such as cytosine arabinoside (Ara-C) work by targeting actively dividing cells, and LSCs are believed to elude chemotherapy by entering a quiescent, non-dividing state. The researchers hypothesized that LSCs could be made more vulnerable to Ara-C via simultaneous treatment with cytokines—naturally-occurring cell signaling molecules—that stimulate them into active division2. In fact, this two-pronged treatment led to a ten-fold increase in survival rate relative to chemotherapy alone for mice that had been transplanted with human LSCs.

Previous studies have suggested that despite some risk of toxicity, cytokine treatment is relatively safe for patients, and Ishikawa’s team is actively investigating the practicality and safety of interventions based on both of their recent discoveries. “We have been putting our best effort into the translation of these findings into medicine,” he says. “At the same time, we are continuing to try to identify unknown aspects of human AML and AML stem cells.”

The corresponding author for this highlight is based at the Research Unit for Human Disease Model, RIKEN Research Center for Allergy and Immunology

1. Saito, Y., Kitamura, H., Hijikata, A., Tomizawa-Murasawa, M., Tanaka, S., Takagi, S., Uchida, N., Suzuki, N., Sone, A., Najima, Y. et al. Identification of therapeutic targets for quiescent chemotherapy-resistant human leukemia stem cells. Science Translational Medicine 2, 17ra9 (2010).

2. Saito, Y., Uchida, N., Tanaka, S., Suzuki, N., Tomizawa-Murasawa, M., Sone, A., Najima, Y., Takagi, S., Aoki, Y., Wake, A. et al. Induction of cell cycle entry eliminates human leukemia stem cells in a mouse model of AML. Nature Biotechnology 28, 275–280 (2010).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com
http://www.rikenresearch.riken.jp/eng/research/6234

Further reports about: AML Allergy LSCs RIKEN stem cells

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>