Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bringing leukemia out of hiding

Two new strategies target a deadly cancer that eludes conventional chemotherapy

Acute myeloid leukemia (AML) is the most common form of adult leukemia, and with an estimated five-year survival rate of 20%, the long-term prognosis for many patients is relatively grim.

“Current treatments for AML can initially reduce the number of AML cells to undetectable levels, a state referred to as ‘complete remission’,” says Fumihiko Ishikawa of the RIKEN Research Center for Allergy and Immunology in Yokohama. “Unfortunately, in a substantial proportion of these patients, AML eventually comes back—and many that relapse succumb to the disease.” The need for an improved arsenal to fight AML has guided much of Ishikawa’s work, and two recently published articles from his team present promising strategies for tackling this dreaded cancer.

AML originates in bone marrow, and relapse is initiated from small pockets of chemotherapy-resistant ‘leukemia stem cells’ (LSCs) within the marrow, which can be identified by their distinctive profile of cell-surface markers. In an effort to identify other features of LSCs that might offer useful therapeutic targets, Ishikawa, Yoriko Saito and team performed a thorough comparative analysis between LSCs and normal blood stem cells to identify genes with functional characteristics pertinent to cancerous growth whose expression is specifically elevated in LSCs1.

... more about:
»AML »Allergy »LSCs »RIKEN »stem cells

Their analysis revealed two candidate cell-surface proteins, CD25 and CD32; both of these are commonly overexpressed in chemotherapy-resistant LSCs, but can also be therapeutically targeted without negatively affecting blood cell development from healthy hematopoietic stem cells, making them potentially promising targets for thwarting relapse.

In parallel, Ishikawa and colleagues have also explored methods for boosting the efficiency of chemotherapy. Standard AML drugs such as cytosine arabinoside (Ara-C) work by targeting actively dividing cells, and LSCs are believed to elude chemotherapy by entering a quiescent, non-dividing state. The researchers hypothesized that LSCs could be made more vulnerable to Ara-C via simultaneous treatment with cytokines—naturally-occurring cell signaling molecules—that stimulate them into active division2. In fact, this two-pronged treatment led to a ten-fold increase in survival rate relative to chemotherapy alone for mice that had been transplanted with human LSCs.

Previous studies have suggested that despite some risk of toxicity, cytokine treatment is relatively safe for patients, and Ishikawa’s team is actively investigating the practicality and safety of interventions based on both of their recent discoveries. “We have been putting our best effort into the translation of these findings into medicine,” he says. “At the same time, we are continuing to try to identify unknown aspects of human AML and AML stem cells.”

The corresponding author for this highlight is based at the Research Unit for Human Disease Model, RIKEN Research Center for Allergy and Immunology

1. Saito, Y., Kitamura, H., Hijikata, A., Tomizawa-Murasawa, M., Tanaka, S., Takagi, S., Uchida, N., Suzuki, N., Sone, A., Najima, Y. et al. Identification of therapeutic targets for quiescent chemotherapy-resistant human leukemia stem cells. Science Translational Medicine 2, 17ra9 (2010).

2. Saito, Y., Uchida, N., Tanaka, S., Suzuki, N., Tomizawa-Murasawa, M., Sone, A., Najima, Y., Takagi, S., Aoki, Y., Wake, A. et al. Induction of cell cycle entry eliminates human leukemia stem cells in a mouse model of AML. Nature Biotechnology 28, 275–280 (2010).

gro-pr | Research asia research news
Further information:

Further reports about: AML Allergy LSCs RIKEN stem cells

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

Advanced analysis of brain structure shape may track progression to Alzheimer's disease

26.10.2016 | Health and Medicine

More VideoLinks >>>