Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Breath test' shows promise for diagnosing fungal pneumonia

23.10.2014

Many different microbes can cause pneumonia, and treatment may be delayed or off target if doctors cannot tell which bug is the culprit. A novel approach—analyzing a patient's breath for key chemical compounds made by the infecting microbe—may help detect invasive aspergillosis, a fungal infection that is a leading cause of mortality in patients with compromised immune systems, according to a proof-of-concept study now online in Clinical Infectious Diseases.

Currently difficult to diagnose, this type of fungal pneumonia often requires a lung biopsy for definitive identification. For debilitated patients with weakened immune systems, including organ or bone marrow transplant recipients and patients on chemotherapy, such an invasive procedure may be challenging. A non-invasive method that can also identify the type of fungus causing pneumonia could lead to earlier and more targeted treatment in these cases.

Sophia Koo, MD, of Brigham and Women's Hospital in Boston, and a team of researchers wondered if they could find a unique "chemical signature" in the breath of patients being evaluated for fungal pneumonia. In the lab, they identified several compounds, or metabolites, normally produced by Aspergillus fumigatus and other fungi that can cause pneumonia.

The researchers then analyzed breath samples from 64 patients with suspected cases of invasive aspergillosis and assessed whether it was possible to distinguish patients with this fungal pneumonia from patients who did not have this illness. Based on the identification of these fungal compounds in the breath samples, they identified patients with the fungal infection with high accuracy—94 percent sensitivity and 93 percent specificity. (In other words, the method was able to detect 94 percent of patients who actually had or likely had the disease, and misidentified as infected 7 percent of patients who were not actually infected.)

There were no adverse events related to the breath collection procedure, the authors reported. It was well-tolerated, including by patients who had difficulty breathing or required supplemental oxygen.

"Identification of the underlying microbial etiology remains elusive in most patients with pneumonia, even with invasive diagnostic measures," Dr. Koo said. "Our findings provide proof-of-concept that we can harness detection of species-specific metabolites to identify the precise microbial cause of pneumonia, which may guide appropriate treatment of these infections."

More research will be needed to validate the findings and refine the approach before it can be considered for clinical use, the authors noted. If supported by future research, the method also may have applications in other kinds of pneumonia. "We can likely also use this volatile metabolite profiling approach to identify other, more common causes of pneumonia," Dr. Koo said.

Fast Facts:

  • Invasive aspergillosis is a cause of fungal pneumonia that is difficult to diagnose, and it is a leading cause of mortality in immune-compromised patients.
  • Researchers were able to detect key compounds, or metabolites, produced by Aspergillus fungi in the breath of patients with fungal pneumonia.
  • Using this approach, researchers correctly distinguished patients with invasive aspergillosis from those who did not have the illness.

Clinical Infectious Diseases is a leading journal in the field of infectious disease with a broad international readership. The journal publishes articles on a variety of subjects of interest to practitioners and researchers. Topics range from clinical descriptions of infections, public health, microbiology, and immunology to the prevention of infection, the evaluation of current and novel treatments, and the promotion of optimal practices for diagnosis and treatment. The journal publishes original research, editorial commentaries, review articles, and practice guidelines and is among the most highly cited journals in the field of infectious diseases. Clinical Infectious Diseases is an official publication of the Infectious Diseases Society of America (IDSA). Based in Arlington, Va., IDSA is a professional society representing nearly 10,000 physicians and scientists who specialize in infectious diseases. For more information, visit http://www.idsociety.org. Follow IDSA on Facebook and Twitter.

Jerica Pitts | Eurek Alert!

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>