Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Breath test' shows promise for diagnosing fungal pneumonia

23.10.2014

Many different microbes can cause pneumonia, and treatment may be delayed or off target if doctors cannot tell which bug is the culprit. A novel approach—analyzing a patient's breath for key chemical compounds made by the infecting microbe—may help detect invasive aspergillosis, a fungal infection that is a leading cause of mortality in patients with compromised immune systems, according to a proof-of-concept study now online in Clinical Infectious Diseases.

Currently difficult to diagnose, this type of fungal pneumonia often requires a lung biopsy for definitive identification. For debilitated patients with weakened immune systems, including organ or bone marrow transplant recipients and patients on chemotherapy, such an invasive procedure may be challenging. A non-invasive method that can also identify the type of fungus causing pneumonia could lead to earlier and more targeted treatment in these cases.

Sophia Koo, MD, of Brigham and Women's Hospital in Boston, and a team of researchers wondered if they could find a unique "chemical signature" in the breath of patients being evaluated for fungal pneumonia. In the lab, they identified several compounds, or metabolites, normally produced by Aspergillus fumigatus and other fungi that can cause pneumonia.

The researchers then analyzed breath samples from 64 patients with suspected cases of invasive aspergillosis and assessed whether it was possible to distinguish patients with this fungal pneumonia from patients who did not have this illness. Based on the identification of these fungal compounds in the breath samples, they identified patients with the fungal infection with high accuracy—94 percent sensitivity and 93 percent specificity. (In other words, the method was able to detect 94 percent of patients who actually had or likely had the disease, and misidentified as infected 7 percent of patients who were not actually infected.)

There were no adverse events related to the breath collection procedure, the authors reported. It was well-tolerated, including by patients who had difficulty breathing or required supplemental oxygen.

"Identification of the underlying microbial etiology remains elusive in most patients with pneumonia, even with invasive diagnostic measures," Dr. Koo said. "Our findings provide proof-of-concept that we can harness detection of species-specific metabolites to identify the precise microbial cause of pneumonia, which may guide appropriate treatment of these infections."

More research will be needed to validate the findings and refine the approach before it can be considered for clinical use, the authors noted. If supported by future research, the method also may have applications in other kinds of pneumonia. "We can likely also use this volatile metabolite profiling approach to identify other, more common causes of pneumonia," Dr. Koo said.

Fast Facts:

  • Invasive aspergillosis is a cause of fungal pneumonia that is difficult to diagnose, and it is a leading cause of mortality in immune-compromised patients.
  • Researchers were able to detect key compounds, or metabolites, produced by Aspergillus fungi in the breath of patients with fungal pneumonia.
  • Using this approach, researchers correctly distinguished patients with invasive aspergillosis from those who did not have the illness.

Clinical Infectious Diseases is a leading journal in the field of infectious disease with a broad international readership. The journal publishes articles on a variety of subjects of interest to practitioners and researchers. Topics range from clinical descriptions of infections, public health, microbiology, and immunology to the prevention of infection, the evaluation of current and novel treatments, and the promotion of optimal practices for diagnosis and treatment. The journal publishes original research, editorial commentaries, review articles, and practice guidelines and is among the most highly cited journals in the field of infectious diseases. Clinical Infectious Diseases is an official publication of the Infectious Diseases Society of America (IDSA). Based in Arlington, Va., IDSA is a professional society representing nearly 10,000 physicians and scientists who specialize in infectious diseases. For more information, visit http://www.idsociety.org. Follow IDSA on Facebook and Twitter.

Jerica Pitts | Eurek Alert!

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>