Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can breastfeeding reduce pain in preterm infants?

19.10.2011
Effects evaluated in new study published in PAIN

Poorly managed pain in the neonatal intensive care unit has serious short- and long-term consequences, causing physiological and behavioral instability in preterm infants and long-term changes in their pain sensitivity, stress arousal systems, and developing brains. In a study published in the November issue of PAIN®, researchers report that breastfeeding during minor procedures mitigated pain in preterm neonates with mature breastfeeding behaviors.

Currently, pain associated with minor procedures such as pricking for blood tests is managed with interventions such as skin-to-skin contact, pacifiers, and sweet tastes, but these produce only modest and/or inconsistent relief. In normal term-born infants, breastfeeding during painful procedures has been shown to reduce pain response by 80-90% and has no serious side effects, but this approach had not previously been tested in preterm infants. One concern is that preterm infants might come to associate breastfeeding with the painful procedure, jeopardizing their ability to feed effectively enough to adequately gain weight.

In a randomized clinical trial, investigators from the Child & Family Research Institute at BC Children's Hospital and The University of British Columbia in Vancouver, BC, conducted a study to learn if preterm infants would show lower pain scores when breastfed during blood collection. They also looked at whether breastfeeding during the painful procedure would have a negative impact on the development of breastfeeding skills, and whether infants who had more mature breastfeeding behaviors would have lower pain scores and heart rates during blood collection than less experienced feeders.

Fifty-seven infants born at 30 to 36 weeks gestational age were divided into two groups. One group was breastfed during blood collection. The other group was given a pacifier. During the procedure, their faces and hands were videotaped, their responses were scored using the Behavioral Indicators of Infant Pain, and their heart rates were measured. Breastfed babies were also scored according to the Premature Infant Breastfeeding Behaviors scale.

For the group as a whole, breastfeeding did not reduce either behavioral or physiological pain during blood collection. Nevertheless, no immediate adverse effects were found on breastfeeding skill development. "Our sample of infants was assessed early in their breastfeeding experience; none of our infants were fully established on breastfeeds," says lead investigator Liisa Holsti, PhD, Clinician Scientist at the Child & Family Research Institute; Assistant Professor, Department of Occupational Science and Occupational Therapy, University of British Columbia; and a Canada Research Chair in Neonatal Health and Development. "For infants whose breastfeeding skills are inconsistent, it is unlikely to mitigate pain effectively."

In the breastfed group, however, infants who were more advanced in their ability to feed did have significantly lower behavioral pain scores. Despite concerns that blood sampling during breastfeeding may be more difficult, the authors report that the time taken for the procedure in the breastfed group was significantly shorter, making blood collection more efficient.

"Finding creative ways to apply breastfeeding for pain mitigation in premature infants is important, because recent research suggests that sweetening agents used to reduce minor procedural pain may act as sedatives rather than analgesics, and they may have negative effects on development," says Professor Holsti. "Our findings support further research on the effects of breastfeeding for more mature feeders over repeated events to assess both the short- and long-term benefits of the treatment."

The article is "Does breastfeeding reduce acute procedural pain in preterm infants in the neonatal intensive care unit? A randomized clinical trial," by Liisa Holsti, Timothy F. Oberlander, and Rollin Brant (DOI: 10.1016/j.pain.2011.07.022). It will appear in PAIN®, Volume 152, Issue 11 (November 2011) published by Elsevier.

Christine Rullo | EurekAlert!
Further information:
http://www.elsevier.com

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>